Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, the performance of a deep learningbased multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) system is investigated for 5G radio communication networks. We consider independent and identically distributed (i.i.d.) Nakagami-m fading links to prove that when using MIMO with the NOMA system, the outage probability (OP) and end-to-end symbol error rate (SER) improve, even in the presence of imperfect channel state information (CSI) and successive interference cancellation (SIC) errors. Furthermore, the stacked long short-term memory (S-LSTM) algorithm is employed to improve the system’s performance, even under time-selective channel conditions and in the presence of terminal’s mobility. For vehicular NOMA networks, OP, SER, and ergodic sum rate have been formulated. Simulations show that an S-LSTM-based DL-NOMA receiver outperforms least square (LS) and minimum mean square error (MMSE) receivers. Furthermore, it has been discovered that the performance of the end-to-end system degrades with the growing amount of node mobility, or if CSI knowledge remains poor. Simulated curves are in close agreement with the analytical results.
EN
This work examines the efficacy of deep learning (DL) based non-orthogonal multiple access (NOMA) receivers in vehicular communications (VC). Analytical formulations for the outage probability (OP), symbol error rate (SER), and ergodic sum rate for the researched vehicle networks are established Rusing i.i.d. Nakagami-m fading links. Standard receivers, such as least square (LS) and minimum mean square error (MMSE), are outperformed by the stacked long-short term memory (S-LSTM) based DL-NOMA receiver. Under real time propagation circumstances, including the cyclic prefix (CP) and clipping distortion, the simulation curves compare the performance of MMSE and LS receivers with that of the DL-NOMA receiver. According to numerical statistics, NOMA outperforms conventional orthogonal multiple access (OMA) by roughly 20% and has a high sum rate when considering i.i.d. fading links.
EN
In this paper, we examine the end-to-end average pairwise error probability (PEP) and output probability (OP) performance of the maximum ratio combining (MRC) based selective decode and forward (S-DF) system over an η–µ scattering environment considering additive white Gaussian noise (AWGN). The probability distribution function (PDF) and cumulative distribution function (CDF) expressions have been derived for the received signal-to-noise (SNR) ratio and the moment generating function (MGF) technique is used to derive the novel closed-form (CF) average PEP and OP expressions. The analytical results have been further simplified and are presented in terms of the Lauricella function for coherent complex modulation schemes. The asymptotic PEP expressions are also derived in terms of the Lauricella function, and a convex optimization (CO) framework has been developed for obtaining optimal power allocation (OPA) factors. Through simulations, it is also proven that, depending on the number of multi-path clusters and the modulation scheme used, the optimized power allocation system was essentially independent of the power relation scattered waves from the source node (SN) to the destination node (DN). The graphs show that asymptotic and accurate formulations are closely matched for moderate and high SNR regimes. PEP performance significantly improves with an increase in the value of η for a fixed value of µ. The analytical and simulation curves are in close agreement for medium-to-high SNR values.
EN
In this work, the performance of selective-decode and forward (S-DF) relay systems over κ-µ fading channel conditions is examined in terms of probability density function (PDF), system model and cumulative distribution function (CDF) of the κ-µ distributed envelope, signal-to-noise ratio and the techniques used to generate samples that rely on κ-µ distribution. Specifically, we consider a case where the sourceto-relay, relay-to-destination and source-to-destination link is subject to independent and identically distributed κ-µ fading. From the simulation results, the enhancement in the symbol error rate (SER) with a stronger line of sight (LOS) component is observed. This shows that S-DF relaying systems may perform well even in non-fading or LOS conditions. Monte Carlo simulations are conducted for various fading parameter values and the outcomes turn out to be a close match for theoretical results, which validates the derivations made.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.