Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The quality of rail steel is conditioned by its high mechanic qualities, which greatly depend on the presence of undesired nonmetallic inclusions. The paper is devoted to the segregation of components, mainly sulphur, and the formation of manganese sulphide in the process of steel solidification, at the casting rate of 100 and 500 K/min. Sulphur is a steel component which disadvantageously influences its numerous parameters. The oxide-sulphide and sulphide precipitations cause cracks and lower the strength of the material. This phenomenon was modeled with the use of author’s computer program based on Matsumiya interdendritic microsegregation model. The main assumptions of this model and thermodynamic conditions of inclusion formation during casting of steel are discussed in this paper. Two cases were analyzed: in the first one the MnS was assumed to form a pure and constant compound, whereas in the other one the manganese sulfide was precipitated as a component of a liquid oxide solution, and its activity was lower than unity. The final conclusion is that chemical composition of steel is the major parameter deciding about the formation of MnS inclusions.
EN
The aim of this study was to analyze the process of manganese sulfide formation based on thermodynamics calculation. Both experimental and theoretical analysis methods were used in this work. Computer simulation with the use of non-commercial software was used for the calculation of the process of segregation of manganese and sulfur and MnS non-metallic particles precipitates in liquid steel during solidification of ingot. The curves illustrating the inclusion formation process are presented. MnS inclusions are disposed along grain boundaries in thin layers and have a rounded shape.
PL
W pracy analizowano proces powstawania siarczku manganu w oparciu o obliczenia termodynamiczne. Wyniki przedstawiono w odniesieniu do badań eksperymentalnych. Symulacje komputerowe procesu segregacji manganu i siarki oraz powstawania wydzieleń MnS podczas krzepnięcia stali zostały wykonane za pomocą nie komercyjnego programu komputerowego. Rezultaty symulacji komputerowej przedstawiono w postaci wykresów prezentujących segregację składników oraz krzywych obrazujących proces powstawania wydzieleń. Wtrącenia MnS są rozmieszczone wzdłuż granic ziaren i mają zaokrąglony kształt.
EN
Obtaining high resistance parameters is a result of generation process of fine-dispersive phases of nitrides, carbides and carbonitrides in the process of solidification and thermal processing. The precipitates formed as a consequence of introduction of: Ti, V, Nb and Al play the role of grain growth inhibitors. Aluminum forms a separate AlN phase, which does not form a solution with the remaining nitrides and carbonitrides. This paper is devoted to the process of AlN inclusions formation in the process of solidification of steel with a microaddition of Al. The process was simulated with the use of own computer program. The calculations were performed for the cooling conditions 100 and 500K/min. The obtained results were illustrated with figures. The influence of the casting rates on the process of aluminum nitride formation as pure non-metallic phase or component of the oxidic solution was analyzed. It was observed that the formation of AlN precipitates takes place easier when nitride is part of a solution composed of a non-metallic phase and at a higher cooling rate. This means that the higher cooling rate, and consequently higher casting rate, favor the precipitation processes and so the fine-grained structure. The results obtained for AlN prove that precipitates formation is conditioned by the concentration of both components. The quantity of the obtained compound will depend on the content of more deficient element, in this case nitrogen. The final distribution and size of particles of second phase will depend on the diffusion process of AlN particles' growth.
PL
Uzyskanie wysokich właściwości wytrzymałościowych jest wynikiem procesów wydzielania drobno dyspersyjnych faz azotków, węglików i węglikoazotków w procesie krzepnięcia i obróbki cieplnej. Rolę inhibitora rozrostu ziaren pełnią wydzielenia powstałe w wyniku wprowadzenia: Ti, V, Nb oraz Al. Aluminium tworzy odrębną fazę AlN, która nie tworzy roztworu z pozostałymi azotkami i węglikoazotkami. Obecna praca zajmuje się zjawiskiem powstawania wydzieleń AlN w procesie krzepnięcia stali z mikrododatkiem Al. Symulację procesu wykonano przy pomocy własnego programu komputerowego. Obliczenia przeprowadzono dla warunków chłodzenia 100 i 500K/min. Otrzymane wyniki zilustrowano w formie wykresów. Badano wpływ szybkości odlewania na proces wydzielania azotku glinu jako czystej fazy niemetalicznej lub składnika roztworu fazy tlenkowej. Stwierdzono, że tworzenie wydzieleń AlN, zachodzi łatwiej wówczas, gdy azotek jest składnikiem roztworu złożonego z fazy niemetalicznej oraz przy większej szybkości chłodzenia. Oznacza to, że zwiększenie szybkości chłodzenia, a w konsekwencji zwiększenie szybkości odlewania sprzyja procesowi wydzieleniowemu, a w rezultacie powstawaniu struktury drobnoziarnistej. Wyniki uzyskane dla AlN są potwierdzeniem, że o możliwości powstawania wydzielenia decydują stężenia obydwu składników. Ilość powstałego związku będzie zależeć od zawartości pierwiastka bardziej deficytowego, w tym przypadku jest nim azot. O ostatecznym rozkładzie i wielkości cząstek drugiej fazy będzie decydować proces dyfuzyjnego wzrostu cząstek AlN.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.