Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents a preliminary study delving into the application of machine learning-based methods for optimizing parameter selection in filtering techniques. The authors focus on exploring the efficacy of two prominent filtering methods: smoothing and cascade filters, known for their profound impact on enhancing the quality of brain signals. The study specifically examines signals acquired through functional near-infrared spectroscopy (fNIRS), a noninvasive neuroimaging modality offering valuable insights into brain activity. Through meticulous analysis, the research underscores the potential of machine learning approaches in discerning optimal parameters for filtering, thereby leading to a significant enhancement in the quality and reliability of fNIRS-derived signals. The results demonstrate the effectiveness of machine learning-based methods in optimizing parameter selection for filtering techniques, particularly in the context of fNIRS signals. By leveraging these approaches, the study achieves notable improvements in the quality and reliability of brain signal data. This work sheds light on promising avenues for refining neuroimaging methodologies and advancing the field of signal processing in neuroscience. The successful application of machine learning-based techniques highlights their potential for optimizing neuroimaging data processing, ultimately contributing to a deeper understanding of brain function.
EN
There is a widespread belief that VR technologies can provide controlled, multi-sensory, interactive 3D stimulus environments that engage patients in interventions and measure, record and motivate required human performance. In order to investigate state-of-the-art and associated occupations we provided a careful review of 6 leading medical and technical bibliometric databases. Despite the apparent popularity of the topic of VR use in cardiac surgery, only 47articles published between 2002 and 2022 met the inclusion criteria. Based on them, VR-based solutions in cardiac surgery are useful both, for medical specialists and for the patients themselves. The new lifestyle required from cardiac surgery patients is easier to implement thanks to VR-based educational and motivational tools. However, it is necessary to develop the above-mentioned tools and compare their effectiveness with Augmented Reality (AR). For the aforementioned reasons, interdisciplinary collaboration between scientists, clinicians and engineers is necessary.
EN
Huntington's disease (HD) is a rare, incurable neurodegenerative disorder where fast and non-invasive diagnosis targeting patients' condition plays a crucial role. In modern medicine, various scientific areas are being combined, such as computing, medicine and biomedical engineering. This survey is focused on the most recent image processing methods applied not only for the purpose of diagnosing HD but also for the assessment of its progression severity, in order to contribute to the effort to prolong life of and to improve its quality.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.