Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 48

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
Cogeneration of electric energy and heat as well as seasonal changes of the condenser pressure in low-pressure extraction/condensing turbines require adaptive control to adapt the geometry of the blading system to the changing flow conditions. In this paper adaptive control is achieved by means of restaggering (rotating) adjustable stator blades. An increase of turbine efficiency and power coming from adaptive control is numerically estimated for a group of two exit stages of an extraction/condensing turbine of power 60 MW. The calculations are made with the help of a computer code FlowER – a 3D solver of turbomachinery flows based on Reynolds-averaged Navier-Stokes equations for perfect gas.
2
Content available remote Efficiency optimisation of blade shape in steam and ORC turbines
EN
This paper is devoted to direct constrained optimisation of blading systems of large power and small power turbines so as to increase their internal efficiency. The optimisation is carried out using hybrid stochastic-deterministic methods such as a combination of a direct search method of Hooke-Jeeves and simulated annealing or a combination of a bat algorithm and simplex method of Nelder-Mead. Among free shape parameters are blade number and stagger angle, stacking blade line parameters and blade section (profile) parameters. One practical example of efficiency optimisation of turbine blading systems is modification of low load profiles PLK-R2 for high pressure (HP) stages of large power steam turbines. Another optimised geometry is that of an ORC radial-axial cogeneration turbine of 50 kWe. Up to 1% efficiency increase can easily be obtained from optimization of HP blade profiles, especially by making the rotor blade more aft-loaded and reducing the intensity of endwall flows. Almost 2% efficiency rise was obtained for the optimized 50 kWe ORC turbine due to flow improvement at the suction side of the blade.
EN
Results of experimental and numerical investigations of wood chips drying are described in the paper. Experiments are carried out on two test facilities: a small laboratory rig and a larger pre-prototype dryer. Both facilities are thorough-circulation convective air dryers. The first one is a batch dryer, whereas the second one is a continuous dryer with wood chips flowing down by gravity from a charging hopper to a gutter with the aid of screw-conveyor. The latter is considered a half scale model (preprototype) for professional drying installations. A low feeding rate of wood chips into the pre-prototype dryer makes the process quasi-stationary and the difference between it and a batch drying is negligible. So, most experiments at this facility were carried out as batch dryers with non-agitated packed beds. The investigations exhibit the same linear correlation between the mass of evaporated water from the packed bed and the drying air velocity for both facilities. Numerical analysis of the drying process is conducted using the Ansys Fluent software enriched in drying capabilities by means of self-written procedures – user defined functions. Simulations confirmed a phenomenon of a drying front observed in the small laboratory rig. A thin layer of wood chips comprises the whole heat exchange and moisture evaporation phenomenon. The drying front travels downstream in the course of the process separating the already dried layer and still wet layer.
EN
The paper presents the methodology and results of research focused on experimental investigation of combustion of biogas fuels in a combustion piston engine. The study highlights the variability of exhaust gases parameters produced by the engine running in an idle mode and in a generation mode. The experimental analysis includes research about variability of temperature in the cylinders, depending on the composition of fuel used to supply the engine. The qualitative and quantitative analysis of exhaust gases extends on biogas substitutes with different proportions of CH₄ and CO₂. Characteristics of a piston combustion engine were created, including CO, CO₂, NOx emission indicators, for a range of engine load and fuel composition.
EN
The paper presents the design process of a radial-axial turbine working with SES36 working fluid. First, the mean-line design process is performed and then the geometry is developed. In the next stage the numerical verification is performed taking into account the real properties of the working fluid. The properties are implemented via a look-up table and by a modified Benedict-Webb-Rubin equation of state. The presented turbine is characterized by a very small stator outflow angle which is about 4.5◦ but despite this small value, the efficiency of the machine is relatively high and equal to about 88%. The influence of internal leakages has also been investigated.
EN
An approach to approximate equations of state for water and steam (IAPWS-95) for the calculation of three-dimensional flows of steam in turbomachinery in a range of operation of the present and future steam turbines is described. Test calculations of three-dimensional viscous flow in an LP steam turbine using various equations of state (perfect gas, Van der Waals equation, equation of state for water and steam IAPWS-95) are made. The comparison of numerical results with experimental data is also presented.
PL
W pracy przedstawiono przykładowy projekt układu przepływowego turbiny małej mocy przeznaczonej do odzyskiwania energii z niskociśnieniowego zasobnika UWCAES. Opisano założenia projektowe i zaprezentowano wyniki obliczeń.
EN
The work presents an example of the flowpath design of a small-scale turbine dedicated to energy recovery from a UWCAES system. The design assumptions along with the computation results have been described.
8
Content available remote Optymalizacja turbiny promieniowo-osiowej pracującej w systemie UWCAES
PL
W pracy przedstawiono metodę optymalizacji geometrii wirnika turbiny powietrznej pracującej w układzie UWCAES. Opisano obiekt poddany modyfikacjom, budowę funkcji celu oraz użyte algorytmy. Na końcu porównano otrzymane wyniki z geometrią wzorcową. Przedstawiony sposób zwiększania sprawności jest możliwy do zastosowania w innych turbinach cieplnych.
EN
The work presents an optimization method of rotor blade geometry of an air turbine working in an UWCAES system. The modified object, the objective function and the used algorithms have been described. Finally, the results of the optimization process have been compared with the original case. The presented method of the efficiency improvement can be used in other thermal turbines.
9
Content available remote Badania eksperymentalne turbiny gazowej Turbec T100 zasilanej gazem zaazotowanym
PL
Artykuł przedstawia opis stanowiska badawczego z turbiną gazową Turbec T100 (obecnie Ansaldo Energia Spa) o maksymalnej mocy 100 kW, przystosowanego do spalania paliw niskokalorycznych. Została przedstawiona koncepcja mieszalnika biogazowego, w którym powstaje mieszanka gazowa złożona z gazu wysokometanowego GZ50 – gazu miejskiego oraz dwóch gazów inertnych – dwutlenku węgla oraz azotu. W pracy przeprowadzono symulację spalania gazu zaazotowanego (5÷40% N2) w zakresie pracy turbiny wynoszącym 30÷90 kW. Wykonano analizy niektórych współczynników pracy turbozespołu, takich jak sprawność, współczynnik nadmiaru powietrza, oraz studium zmian składu spalin (CO, NO).
EN
A papier provides an overview of the Turbec T100 microturbine test stand (at present Ansaldo Energia Spa.) with maximum electrical power of 100kW adopted to combustion low-caloric fuel. It was presented the concept of biogas mixing station that produces the gas mixture consisting of high-methane gas (GZ50) – gas from city grid, and two inert gases – carbon dioxide and nitrogen. The work was carried out simulations of combustion of nitrogen-rich gas (5-40% N2) with operating range of the turbine of 30-90kW. An analysis of selected operating parameters such us efficiency, fuel–air equivalence ratio and study of changes in the composition of the exhaust gases (CO, NO) were carried out.
PL
W niniejszym artykule przedstawiono metodykę oraz wyniki badań dotyczących eksperymentalnego wzbogacania i spalania paliw ciekłych typu diesel w silniku tłokowym o zapłonie samoczynnym KIPOR KM178F, który został zamontowany w agregacie prądotwórczym KIPOR KDE3500E. W pracy zwrócono uwagę na zmienność parametrów spalin silnika pracującego w trybie biegu jałowego oraz pod obciążeniem zasilanego paliwem ciekłym i wzbogaconym wodorem o różnych udziałach objętościowych, względem objętości całkowitej cylindra silnika. Przeprowadzono dokładną analizę jakościową i ilościową spalin przy wykorzystaniu specjalistycznego sprzętu pomiarowego. Określony został charakter zmian składu spalin, w tym cząstek CO, CO2, NOx, w zależności od obciążenia silnika zasilanego różnymi paliwami.
EN
This paper presents the methodology and results of research focused on experimental investigation of enrichment and combustion of liquid fuels in a KIPOR KM178F CI engine mounted in the electric generator KIPOR KDE3500E. The study highlighted the variability of exhaust gases parameters produced by engine running in an idle mode and in a generation mode. Liquid diesel fuel and liquid diesel fuel enriched with hydrogen were used to supply the engine. Various volumetric proportions of hydrogen were calculated. Qualitative and quantitative analysis of exhaust gases was carried out by using specialized measuring equipment. The composition of the exhaust gases, including particulate CO, CO2, NOx, depending on the load of working engine powered by different fuels was defined.
PL
W niniejszym artykule przedstawiono metodykę oraz wyniki badań dotyczących eksperymentalnego generowania i spalania paliw ciekłych typu diesel w silniku tłokowym o zapłonie samoczynnym. Zwrócono uwagę na zmienność parametrów pracy silnika uruchamianego w trybie biegu jałowego oraz pod obciążeniem. Dokonano analizy zmienności temperatury w poszczególnych cylindrach, w zależności od rodzaju generowanego paliwa wykorzystywanego do jego zasilania. Przeprowadzono dokładną analizę jakościową i ilościową spalin przy wykorzystaniu jako paliwa substytutu biogazu o różnych proporcjach metanu i dwutlenku węgla. Określony został charakter zmian składu spalin, w tym cząstek CO, CO2, NOx w zależności od obciążenia silnika zasilanego różnymi paliwami.
EN
This paper presents the methodology and results of research focused on experimental investigation of generation and combustion of liquid fuels in a combustion piston engine. The study highlights the variability of exhaust gases parameters produced by the engine running in an idle mode and in a generation mode. The experimental analysis includes research about variability of temperatures in the cylinders, depending on the type of fuel used to supply the engine. The qualitative and quantitative analysis of exhaust gases extends on biogas substitutes with different proportions of methane and carbon dioxide. Characteristics were created depending on the composition of exhaust gases, including particulate CO, CO2, NOx, for a range of engine load and fuel composition.
EN
The paper is focused on selected technical problems of cogeneration of heat and electric power (combined heat and power – CHP) both in a large and small scale. First, largescale cogeneration systems applied in large power industry are discussed and results of adaptive control of extraction condensing turbines are presented. Then, advantages of distributed cogeneration are pointed out and small-scale cogeneration systems aimed for modernisation of a fossil-fuel district heating plant are investigated. At the end of the paper, organic Rankine cycle (ORC) heat and power units are described for biomassfuelled cogeneration and topping of main generation units to use the recovery heat.
15
Content available remote Selected technical problems of cogeneration of electric energy and heat
EN
Cogeneration as a simultaneous production of electric energy and heat brings a considerable increase of energy efficiency and contributes to decrease emissions of harmful gases into the environment. Cogeneration can be applied in a large and small scale, however the opportunities for cogeneration are usually determined by the demand on heat. The prime movers in the large-scale cogeneration are steam turbines operating in a closed Rankine cycle. Extraction-condensing turbines provide the possibility of flexible coping with heat demand with practically little loss to the electric energy production. In order to take full advantage of variable load operation in extraction-condensing turbines, their adaptive control is needed and will be discussed in the paper. Cogeneration can especially be applied in small power units of distributed generation systems. In small (and micro) units, the produced energy goes first to local communities. One can mention here the energy generation for households, residence buildings, large farms, public buildings or small and medium enterprises. The surplus of electric energy goes to the power network, whereas heat surplus goes to local district heating networks. There are many different technologies available for cogeneration of electric energy and heat in distributed sources such as gas/biogas stations, pv/solar instalations, biorafinery, biomass stations. The paper describes an idea of a multi-fuel cogeneration system, which is a local energy centre for a small municipal community that includes a biomass-fueled steam power unit, ORC power unit, a group of gas piston engines and a coal boiler. ORC is a promising technology for cogeneration based on local energy resources. ORC power units can be used as a main generation system allowing utilisation of different types of fuels. The solution also offers a possibility to apply low temperature heat sources. Therefore, ORC can be applied for topping main generation systems, for example based on piston engines or gas turbines. In the first case a heat source is usually a biomass-fueled boiler, whereas in the latter case ORC operates on a recovery heat coming from the exhaust gases and/or engine cooling system. The ORC unit working in a combined cycle allows for a considerable increase of electric energy production. In the framework of the strategic programme of the Polish National Centre for Research and Development (NCBiR) two pilot installations with a considerable industrial potential are developed at IMP PAN: – a poligeneration ORC system of electric power 100 kW and heat power 400 kW being a model for an agro-energy complex. The system consists of a boiler, intermediate heat cycle, ORC unit with a turbine working on a silica oil MDM, orfice cooling unit and connection to electric and heating network. The system products electricity, heat and cold; – a cogeneration gas/ORC unit of electric power 0.45 MWe with a gas piston engine topped by an ORC unit. The recovery boiler is installed to transport heat from exhaust gases to the low-temperature ORC unit working on a medium SES36, whereas the heat from cooling the piston engine is used for network heating.
16
Content available remote Numerical investigation of a GTM-140 turbojet engine
EN
The paper presents three-dimensional numerical simulations of combustion in the GTM-140 miniature turbine engine. The main aim of the work is to understand the processes occurring in the combustion chamber. The coupling of chemical kinetics, thermochemistry, transport of mass, energy and momentum, and fluid mechanics is a challenge for the engineers. The knowledge of these issues is essential to achieve a high performance product. The k-ε (RANS) Turbulence Model and Non-Premixed Model for the combustion was used. The particles of fluid droplets were described by the Discrete Phase Model.
17
Content available remote Design and numerical study of turbines operating with MDM as working fluid
EN
Design processes and numerical simulations have been presented for a few cases of turbines designated to work in ORC systems. The chosen working fluid is MDM. The considered design configurations include single stage centripetal reaction and centrifugal impulse turbines as well as multistage axial turbines. The power outputs vary from about 75 kW to 1 MW. The flow in single stage turbines is supersonic and requires special design of blades. The internal efficiencies of these configurations exceed 80% which is considered high for these type of machines. The efficiency of axial turbines exceed 90%. Possible turbine optimization directions have been also outlined in the work.
PL
W artykule przedstawiono metodę oraz wyniki optymalizacji sprawnościowej ołopatkowania przestrzennego dwóch ostatnich stopni mikroturbiny ORC9000 lOOkW z wykorzystatniem pakietu OPT_TURB oraz Matlab Toolbox - Neural Network. Wyznaczono funkcję celu z post-processingu obliczeń 3D części przepływowej przy użyciu programu FlowER - solwera modelu RANS. Funkcje celu zdefiniowano, jako sumę strat energii kinetycznej oraz energii wylotowej. Zaproponowano model sztucznej sieci neuronowej wytrenowanej przy użyciu algorytmu Lavenberga-Marquardta.
EN
The paper presents the methods and results of optimization of two last stages of a microturbine ORC9000 lOOkW using a software package OPTI_TURB and Matlab Toolbox - Neural Network. Values of the minimised objective function, that is losses of kinetic energy and exit velocity are found in the first step from 3D RANS computation (from a FlowER code) of geometries changed during the direct process optimization. In the second step an indirect method is used. The applied neural network is trained over flow data with the help of Lavenberg - Marquardt backpropagation.
PL
Artykuł przedstawia trójwymiarowe obliczenia numeryczne spalania w miniaturowym silniku turbinowym GTM-140. Głównym celem pracy jest zrozumienie procesów zachodzących w zastosowanej komorze spalania. Została przeprowadzona analiza strat przepływu w silniku turbinowym. Przedstawiono wyniki w postaci pól temperatury, ciśnienia oraz prędkości z uwzględnieniem przepływu cold flow oraz przepływu reakcyjnego. Został użyty model turbulencji k-s (RANS), jako model spalania posłużył Non-Premixed Equilibrium Model oraz Dicrete Phase Model jako model z odparowaniem kropel paliwa.
EN
This article presents three-dimensional numerical calculations of combustion in the GTM-140 miniature turbine engine. The main aim of this work is to understand the processes occurring in the combustion chamber. Flow losses analysis in the turbine engine was conducted. The paper shows the results as the fields of temperature, pressure and velocity including the "coldflow" and the flow with reaction. The k-s (RANS) Turbulence Model and Non-Premixed Equilibrium Model for combustion was used. The particles of fluid droplets were described by the Discrete Phase Model.
20
Content available remote Complex multidisciplinary optimization of turbine blading systems
EN
The paper describes the methods and results of direct optimization of turbine blading systems using a software package Opti_turb. The final shape of the blading is obtained from minimizing the objective function, which is the total energy loss of the stage, including the leaving energy. The current values of the objective function are found from 3D RANS computations (from a code FlowER) of geometries changed during the process of optimization. There are constraints imposed on the mass flow rate, exit swirl angle and reactions, as well as on changes of stresses in the metal. Among the optimized parameters are those of the blade itself (such as the blade number and stagger angle as well as the stacking blade line parameters) and those of the blade section (profile). Two new hybrid stochastic-deterministic methods are used for the optimization of flow systems. The first method is a combination of a genetic algorithm and a simplex method of Nelder–Mead. The other method is a combination of a direct search method of Hooke–Jeeves and simulated annealing. Also two methods of parametrization of the blade profile are described. They make use of a set of circle arcs and Bezier functions. In the course of optimization, the flow efficiency of a group of two low pressure (LP) exit stages of a 50 MW turbine operating over a wide range of load is increased by means of optimization of 3D blade stacking lines. Another practical example of efficiency optimization of turbine blading systems is modification of low load profiles PLK-R2 for high pressure (HP) steam turbine stages. It is shown that optimization of geometry of turbine blading systems can give considerable efficiency gains. Optimization of 3D blade stacking lines in LP turbine stages can give over a 2% efficiency rise. Up to 1% efficiency, increase can be obtained from optimization of HP blade profiles and their restaggering.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.