Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Failure diagnosis is an important component of the Condition Based Maintenance (CBM) activities for most engineering systems. Rolling element bearings are the most common cause of rotating machinery failure. The existence of the amplitude modulation and noises in the faulty bearing vibration signal present challenges to effective fault detection method. The wavelet transform has been widely used in signal de-noising due to its extraordinary time-frequency representation capability. In this paper, we proposed new approach for bearing fault detection based on the autocorrelation of wavelet de-noised vibration signal through a wavelet base function derived from the bearing impulse response. To improve the fault detection process the wavelet parameters (damping factor and center frequency) are optimized using maximization kurtosis criteria to produce wavelet base function with high similarity with the impulses generated by bearing defects, that leads to increase the magnitude of the wavelet coefficients related to the fault impulses and enhance the fault detection process. The results show the effectiveness of the proposed technique to reveal the bearing fault impulses and its periodicity for both simulated and real rolling bearing vibration signals.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.