Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The focus of the present research endeavour is to propose a single channel Electromyogram (EMG) signal driven continuous terrain identification method utilizing a simple classifier. An iterative feature selection algorithm has also been proposed to provide effective information to the classifiers. The proposed method has been validated on EMG signal of fifteen subjects and ten subjects for three and five daily life terrains respectively. Feature selection algorithm has significantly improved the identification accuracy (ANOVA, p-value < 0.05) as compared to principal component analysis (PCA) technique. The average identification accuracies obtained by Support Vector Machine (SVM), Linear Discriminant Analysis (LDA) and Neural Network (NN) classifiers are 96.83 ± 0.28%, 97.45 ± 0.32% and 97.61 ± 0.22% respectively. Subject wise performance (five subjects) of individually trained classifiers shows no significant degradation and difference in performance among the subjects even for the untrained data (ANOVA, p-value > 0.05). The study has been extended to dual muscle approach for terrain identification. However, the proposed algorithm has shown similar performance even with the single muscle approach (ANOVA, p-value > 0.05). The outcome of the proposed continuous terrain identifi-cation method shows a pronounced potential in efficient lower limb prosthesis control.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.