Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Structural design requirements for flexible culverts are available in several international bridge design codes. Examples are the Canadian (CHBDC), the American (AASHTO) and the Swedish (TRVK Bro ll2). The designation “flexible culvert” may today be somewhat misleading. The word culvert is usually associated with small pipes in road embankments. However, over the years flexible culverts have grown bigger and a more proper designation would be bridges. Therefore, these structures are often also referred to as Soil-Steel Composite Bridges or just Soil-Steel Bridges. With this development also new and more stringent requirements on the structural design follows. In this paper key aspects of a holistic design approach based on the authors experience on the essentials of flexible culvert structural design3 are outlined and is compared to the current design approaches in the CHBDC and the TRVK Bro 11. However, this paper will provide insight into how the holistic design topics are addressed in current design codes and future research and development.
EN
Knowing the structural capacity of existing bridges is essential for road administrations. This is equally true for flexible culverts as for any other type of bridge. For older structures all necessary data for a full detailed verification of the structural capacity may not be in place. In some instances the missing data may be possible to retrieve by different measurement and testing procedures in the field and in laboratory environment. However, for most of the structures one need to rely on database information when estimating the structural capacity. In this paper the procedures for estimating the structural capacity of existing flexible culverts specific for Swedish conditions is described along with some technical aspects important for the structural capacity.
3
EN
The performance of buried flexible steel structures is directly influenced by the quality of the backfill soil and its configuration around the conduit. The economical choice of these structures stimulates practitioners to expand their different applications including their performance in sloping environment. The presence of steep surface slopes induces unbalanced loading and asymmetrical soil support around the conduit. This paper outlines the latest research efforts on how a flexible culvert would perform in sloping terrain environment. The paper focuses primarily on the structural behaviour of soil loading effects. The investigation highlights the use of numerical simulation in predicting the performance of a case study of flexible culvert under different construction schemes, where the influence of slope intensity and depth of soil cover are briefly presented. Soil slope stability as a major concern is also discussed. The research outcome clearly underlines the importance of soil configuration around steel culverts. The asymmetrical response of the conduit is predictably observed from the results and greatly influenced by the presence of shallow depth of soil covers. Sectional forces tend to increase with the increase of surface slopes. The results also underline the necessity of soil stability investigation when constructing flexible culverts in sloping terrain.
4
Content available Large-span soil steel composite bridges
EN
Soil-steel composite bridges are considered competitive structures being an economical alternative to similar span concrete bridges. They are increasingly used for road and railway bridge construction. Spans have increased and structures with spans over 20 m have been built. The continuous development of infrastructure impels designers to push the limits of these structures for bigger spans with the lowest possible height of cover. Since the birth of the ring compression theory, different design methods have been developed to account for the various conditions and facilitate the use of bigger span structures. Yet, there is an urge to investigate whether the current design procedures are conservative or if they are reasonably accurate to predict the capacity of large-span structures. This paper presents the on-going project involving the capacity of large-span soil-steel composite bridges. The study investigates the use of finite element modelling in predicting the performance of a case study for an ultimate limit state field test. The project also highlights the need and intention to perform an ultimate limit state test for a large-span structure. The outcome of the project is to assess the current design procedures and to reflect recommendations on the design where seen applicable.
EN
A fatigue assessment of steel structures based on the safe life approach requires a detail category representing the fatigue strength. For flexible culverts there are no matching details in the governing regulations. In this paper the testing and evaluation of the fatigue strength of a standardized bolted connection for steel culverts are presented. A test rig was designed to mimic the in-service conditions with a combination of bending moment and axial force. A total of ten specimens was tested to failure. The failure was governed cracks initiating at the indentations from the bolt heads and propagated towards the nearest edge. From the test results, an S-N curve has been derived suggesting a characteristic fatigue strength of 124 MPa at 2 million cycles and a slope of 5 in log-log scale.
6
Content available remote Fatigue design of soil steel composite Bridges
EN
Soil steel composite bridges are used more and more often in road and railroad bridge construction. Spans have increased and structures with spans over 20 m have been built. At the same time road designers call for lower heights of cover. At lower heights of cover the effect of concentrated loads will increase and therefore checking of the fatigue capacity is becoming more important. The paper presents the on-going project involving fatigue testing of bolted connections used to lap corrugated steel plates in Soil Steel Composite Bridges together with an evaluation of the detail category. The project also includes the development of a design procedure for the fatigue design of a Soil Steel Composite Bridge with low height of cover according to the Eurocode.
PL
Kompozytowe konstrukcje gruntowo-stalowe są wykorzystywane coraz częściej w roli mostów drogowych i kolejowych. Rozpiętość tych konstrukcji wzrasta; powstają nawet konstrukcje o rozpiętości przekraczającej 20 m. Jednocześnie projektanci dróg wymagają coraz mniejszej wysokości naziomu. Przy mniejszej wysokości naziomu wzrasta oddziaływanie skupionych obciążeń, co zwiększa znaczenie kontroli wytrzymałości zmęczeniowej. Praca przedstawia prowadzony aktualnie projekt badawczy, obejmujący próby zmęczeniowe połączeń śrubowych służących do łączenia na zakładkę blach w mostach gruntowo-stalowych ze stali falistej wraz z oceną kategorii. Projekt obejmuje również opracowanie procedury projektowania wytrzymałości zmęczeniowej mostów gruntowo- stalowych z niskim naziomem zgodnie z Eurocode.
7
Content available remote Development of design tools for soil steel composite bridges
EN
This paper describes some of the research background needed for the development of the Swedish design method for Soil Steel Composite Bridges. The research work was undertaken at the Department of Civil and Architectural Engineering, division of Structural Engineering and Bridges, at KTH Royal Institute of Technology in Stockholm, Sweden. With spans growing larger and heights of cover smaller, the aim was to develop a design method that could be used in everyday design work. The design method, based on several full-scale tests, is today a code requirement in Sweden and Finland and is in use in several other countries in Europe. This paper describes some of the background to the design method, but also on-going research and planned future developments.
PL
Praca opisuje częściowo podstawy badań przeprowadzonych w opracowania szwedzkiej metodologii projektowania mostów gruntowo-stalowych. Badania zostały przeprowadzone na Wydziale Inżynierii Lądowej i Wodnej i Architektury w katedrze Inżynierii Budowlanej i Techniki w Królewskim Instytucie Techniki KTH w Sztokholmie w Szwecji. Ponieważ zwiększają się rozpiętości, a wysokości naziomu maleją, celem pracy było opracowanie metody projektowej, którą można stosować w codziennej pracy projektowej. Metoda projektowa, oparta o kilka prób w pełnej skali, stanowi dzisiaj część wymogów przepisów projektowych w Szwecji oraz Finlandii i jest również stosowana w innych krajach europejskich. Praca opisuje część badań, które pozwoliły opracować tę metodę, a także badania prowadzone obecnie i planowane.
9
Content available remote Development of the Swedish handbook for buried flexible culverts
EN
The development of the Swedish handbook on design of buried metal flexible culverts started in 1983 with the Swedish National Road Administration highlighting the need for a design method capable of handling larger spans and small heights of cover. A research project was started at the Royal Institute of Technology in Stockholm and a first full-scale test on a 6,1 m pipe arch culvert having a 1,0 m height of cover was performed. At the same time theoretical studies of different international design methods was started. A second full scale test was performed on a 6,0 m span pipearch culvert varying the height of cover. The design handbook was presented in 2000. Based on the Soil Culvert Interaction-method developed by Duncan the design method allow the designer to calculate both thrust and bending moments in a large variety of culvert profiles and taking different soil conditions into consideration. Both road and railroad live load can be used. Several full scale tests have been performed including the so-called BoxCulvert. A revised handbook has been presented in 2006 including the BoxCulvert extended method. The Swedish bridge codes, both for road and railroad bridges, require the use of the handbook method in the design of buried metal flexible culverts.
PL
Stworzenie szwedzkiego podręcznika do projektowania konstrukcji podatnych z blach falistych zostata zapoczątkowane w 1983 przez Szwedzką Administrację Drogową , która zwróciła uwagę na konieczność stosowanie większych rozpiętości konstrukcji przykrytych niskim naziomem. Badania rozpoczął Królewski Instytut Technologii ze Sztokholmu. Pierwszym zbadanym obiektem była konstrukcja o kształcie kroplistym o rozpiętości 6,1 m przykryta naziomem o miąższości 1,0 m. W tym samym czasie rozpoczęto studia teoretyczne nad istniejącymi metodami z zagranicy. Drugie badania w skali naturalnej wykonano na obiekcie o kształcie kroplistym przykrytej naziomem o zmiennej miąższości. W 2000 roku zaprezentowano podręcznik do projektownia. Metoda projektowania bazuje nametodzie współpracy gruntu z przepustem opracowanej przez Duncana. Pozwala ona na uwzględnienie sił normalnych i momentów zginających w różnorodnych profilach konstrukcji z uwzględnieniem różnych gruntów. Obciążenia mogą pochodzić od ruchu kołowego i kolejowego. Na podstawie kolejnych pełnowymiarowych badań konstrukcji o kształcie skrzynkowym ( Box Culvert) w 2006 roku zaprezentowano udoskonalona wersję podręcznika uwzględniające wymiarowanie konstrukcji o kształcie skrzynkowym. Szwedzkie normy mostowe nakładają obowiązek stosowanie niniejszej metody przy wymiarowaniu konstrukcji z blach falistych.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.