The useful life time of equipment is an important variable related to system prognosis, and its accurate estimation leads to several competitive advantage in industry. In this paper, Remaining Useful Lifetime (RUL) prediction is estimated by Particle Swarm optimized Support Vector Machines (PSO+SVM) considering two possible pre-processing techniques to improve input quality: Empirical Mode Decomposition (EMD) and Wavelet Transforms (WT). Here, EMD and WT coupled with SVM are used to predict RUL of bearing from the IEEE PHM Challenge 2012 big dataset. Specifically, two cases were analyzed: considering the complete vibration dataset and considering truncated vibration dataset. Finally, predictions provided from models applying both pre-processing techniques are compared against results obtained from PSO+SVM without any pre-processing approach. As conclusion, EMD+SVM presented more accurate predictions and outperformed the other models.
PL
Okres użytkowania sprzętu jest ważną zmienną związaną z prognozowaniem pracy systemu, a możliwość jego dokładnej oceny daje zakładom przemysłowym znaczną przewagę konkurencyjną. W tym artykule pozostały czas pracy (Remaining Useful Life, RUL) szacowano za pomocą maszyn wektorów nośnych zoptymalizowanych rojem cząstek (SVM+PSO) z uwzględnieniem dwóch technik przetwarzania wstępnego pozwalających na poprawę jakości danych wejściowych: empirycznej dekompozycji sygnału (Empirical Mode Decomposition, EMD) oraz transformat falkowych (Wavelet Transforms, WT). W niniejszej pracy, EMD i falki w połączeniu z SVM wykorzystano do prognozowania RUL łożyska ze zbioru danych IEEE PHM Challenge 2012 Big Dataset. W szczególności, przeanalizowano dwa przypadki: uwzględniający kompletny zestaw danych o drganiach oraz drugi, biorący pod uwagę okrojoną wersję tego zbioru. Prognozy otrzymane na podstawie modeli, w których zastosowano obie techniki przetwarzania wstępnego porównano z wynikami uzyskanymi za pomocą PSO + SVM bez wstępnego przetwarzania danych. Wyniki pokazały, że model EMD + SVM generował dokładniejsze prognozy i tym samym przewyższał pozostałe badane modele.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.