The isotope activity concentration of rocks and bottom sediments was evaluated based on the samples collected from sedimentation ponds and gangue repositories. Radium 226Ra, thorium 228Th and potassium 40K activities were measured by gamma spectrometry using high-purity germanium detector – HPGe 4020. The radiation effect resulting from the presence of natural radionuclides was estimated by radiological hazard indices such as f1 and f2 coefficients, radium equivalent, internal and external hazard indices and absorbed dose rate. Performed measurements and calculations have shown that the bottom sediments are most contaminated. They may pose a serious radiological hazard for present and future generations.
A comparison of two methods of radiocarbon age determination of groundwater is presented. The simplest Pearson model and the “user-defined” option of the NETPATH program were considered. Both methods were used to determine the age of water from a PZ-2 piezometer that is situated in the foreground of chamber Z-32 in Wieliczka Salt Mine. Results of these calculations clearly demonstrate that 14C ages obtained by the Pearson model can be significantly overestimated in comparison with those determined by the NETPATH code. Without additional data, such as the stable isotope composition of the water, conclusions on the age of the groundwater based solely on the Pearson model may be highly inadequate.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Isotopic composition of precipitation (2H/1H and 18O/16O isotope ratios, tritium content) is nowadays widely used in numerous applications of environmental isotopes—most notably in hydrology, climatology and biogeochemistry. Here we present a long record (44 years) of stable isotope composition and tritium content in monthly precipitation available for the Krakow station (southern Poland). Krakow is the only site in Poland for which long-term record of the isotopic composition of monthly precipitation is available. The tritium data are discussed here in the context of generally declining levels of bomb tritium in the global atmosphere and growing influence of technogenic emissions of this isotope. Two aspects of temporal variability of stable isotope composition of precipitation collected in Krakow are discussed here: (i) seasonality and (ii) interannual changes of δ18O and δ2H signal. Whereas the seasonality of stable isotope signal is generated mainly by seasonally varying the degree of rainout of air masses bringing moisture from the source regions (subtropical Atlantic Ocean) to the centre of the European continent, the North Atlantic Oscillation seems to govern interannual changes of δ18O and δ2H on the decadal timescale. Progressing warming of the local atmosphere, in the order of 1.8 °C in the past four decades, leaves its imprint in stable isotope signal measured in Krakow precipitation; the slope of isotope–temperature relationship is in the order of 0.50‰/°C for δ18O and 3.5‰/°C for δ2H.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.