Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 207

Liczba wyników na stronie
first rewind previous Strona / 11 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 11 next fast forward last
EN
In order to overcome the shortcomings of the dolphin algorithm, which is prone to falling into local optimum and premature conver-gence, an improved dolphin swarm algorithm, based on the standard dolphin algorithm, was proposed. As a measure of uncertainty, information entropy was used to measure the search stage in the dolphin swarm algorithm. Adaptive step size parameters and dynamic balance factors were introduced to correlate the search step size with the number of iterations and fitness, and to perform adaptive adjustment of the algorithm. Simulation experiments show that, comparing with the basic algorithm and other algorithms, the improved dolphin swarm algorithm is feasible and effective.
EN
The distortion of air gap magnetic field caused by the rotor eccentricity contributes to the electromechanical coupling vibration of the brushless DC (BLDC) permanent magnet in-wheel motor (PMIWM) in electric vehicles (EV). The comfort of the BLDC in-wheel motor drive (IWMD) EV is seriously affected. To deeply investigate the electromechanical coupling vibration of the PMIWM under air gap eccentricity, the PMIWM, tyre and road excitation are analyzed first. The influence of air gap eccentricity on air gap magnetic density is investigated. The coupling law of the air gap and the unbalanced magnetic force (UMF) is studied. The coupling characteristics of eccentricity rate, air gap magnetic density, UMF, phase current and vibration acceleration are verified on the test bench in the laboratory. The mechanism of the electro-mechanical coupling vibration of the BLDC PMIWM under air gap static eccentricity (SE), dynamic eccentricity (DE) and hybrid eccentricity (HE) is revealed. DE and HE deteriorate the vibration acceleration amplitude, which contributes the electromechanical coupling vibration of the PMIWM. The research results provide a solid foundation for the vibration and noise suppression of the PMIWM in distributed drive EV.
EN
This paper analyzes the requirements of the information transmission network of ship integrated condition monitoring system, and proposes a design scheme of ship condition monitoring system based on wireless ad hoc network. The wireless ad hoc network protocol was designed, its networking process was analyzed in detail, and the network transmission performance of the monitoring system was tested. The results proved the feasibility of the system. The above solution can be used for the transmission of ship state information that satisfies the requirements of wireless transmission, and has important theoretical and practical significance. The slot allocation algorithm has been receiving extensive attention as an important part of the TDMA system research. This paper analyzes the summarization and summarization of TDMA time slot assignment algorithms from several aspects such as slot synchronization, existing slot allocation algorithm, and slot assignment model, laying an important foundation for researchers to do further research. In the TDMA system, time is divided into non-overlapping time frames, and the time frames are divided into non-overlapping time slots. Each node in the network performs corresponding operations in each time slot.
EN
In order to discuss the simulation model of the ship transmission line and the state of the transmission line, an early fault model is built according to the evolution principle of the short circuit fault of the transmission line and combining with the fault characteristics of the early fault. A small distributed ship transmission line system is built in MATLAB/ Simulink. Then, combined with the constructed fault module, the original short circuit module, and the load module, the various states (normal state, early fault state, severe early fault state, short circuit state) of the ship transmission line are stimulated, and the features of voltage signal in each state is analysed. It is concluded that, due to the normal operation of the ship transmission line system, the variation characteristics of the flow signal and voltage signal caused by the sudden load mutation, that is, the sudden load and the sudden increase load, are very similar to the changes caused by the early fault. Therefore, in order to find a more accurate early fault detection method, the state is divided into normal state, sudden load state, sudden increase and sudden decrease load state.
EN
In this study, a methodology was presented to predict density stratified flows in the near-field of submerged bodies. The energy equation in temperature form was solved coupled with momentum and mass conservation equations. Linear stratification was achieved by the definition of the density as a function of temperature. At first, verifications were performed for the stratified flows passing a submerged horizontal circular cylinder, showing excellent agreement with available experimental data. The ability of the method to cope with variable density was demonstrated. Different turbulence models were used for different Re numbers and flow states. Based on the numerical methods proposed in this paper, the stratified flow was studied for the real scale benchmark DAPRA Suboff submarine. The approach used the VOF method for tracing the free surface. Turbulence was implemented with a k − ω based Detached Eddy Simulation (DES) approach. The effects of submarine speed, depth and density gradient on the free surface wave pattern were quantitatively analyzed. It was shown that, with the increasing of the speed of the submarine, the wavelength and wave height of the free surface wave were gradually increasing. The wave height of the free surface wave was gradually reduced as the submarine’s depth increased. Relative to the speed and submarine depth, the changes of the gradient density gradient have negligible effects on the free surface wave field.
EN
In order to ensure the safety and reliability of the horizontal brace of semi-submersible platform (SEMI) which functions as the supporting structure in SEMI, this article presents an elastic-plastic method to analyze the variations of the crack tip opening displacement, elastic zone and plastic zone of the cracked section of the horizontal brace under beam wave. The brace of the SEMI was assumed to be located a circumferential through crack at its boundary in this article. In addition, the cracked section of the brace has been divided into crack zone, tensile plastic zone, elastic zone and compressive plastic zone in the presented theoretical model. Moreover, the closed form of the solution has been found in this article which is especially suitable solving complicated problems in practical engineering application. Also, a typical new-generation SEMI that is in practical use was selected to analyze the variation tendency of the cracked brace’s parameters using the proposed model which could give good suggestion to semi-submersible platform designers and managers.
EN
Coastal wetlands are ecologically important all over the world, and they are relatively unstable with dramatic changes in aboveground vegetation. However, it is still unclear how the aboveground vegetation changes will influence the functioning of coastal wetland ecosystems, especially the decomposition processes. Here, we carried out a cotton strip experiment to examine the effects of Suaeda salsa community on the soil properties and the associated cellulose decomposition rates in the coastal wetlands of Liao River delta (NE China). Our results showed that S. salsa community significantly affected the contents of soil C, N, P, base cations, organic matter and the soil electrical conductivity (EC), and such effects might vary among different types or densities of aboveground vegetation. The soil cellulose decomposition rate (in terms of cotton strip tensile strength loss, CTSL) was slowed down when aboveground S. salsa communities are experiencing degradation or have been totally replaced by Phragmites australis communities. Moreover, there were positive partial correlations between soil N and CTSL, and between soil EC and CTSL, but a negative partial correlation between soil C and CTSL. Our results emphasized the importance of S. salsa community in determining the soil cellulose decomposition rate in this coastal region. The results suggest that vegetation degradation in coastal wetlands might lead to various changes in soil properties and hence affect other aspects of ecosystem functioning and services, especially nutrient cycling.
EN
Fertilizer encapsulation through polymer membranes can reduce fertilizer losses and minimize environmental pollution. In this paper, an emulsion of ethyl cellulose (EC)/vinyl acetate (VAc)/butyl acrylate (BA) was successfully prepared by pre-emulsified semi-continuous seed emulsion polymerization. EC/BA/VAc films showed biodegradability. The influence of the EC content on the properties of EC/BA/VAc films was also investigated by DSC, a water absorbency analysis, etc. Controlled-release urea encapsulated by EC/BA/VAc latex was prepared in a film coating machine and conformed to the standards for slow-release fertilizers of the Committee of European Normalization. The release of urea from controlled-release urea encapsulated by EC/BA/VAc latex containing 0%, 5%, 10%, and 15% EC was 75.1%, 65.8%, 70.1% and 84.1%, respectively, after 42 days, and controlled-release urea encapsulated by EC/BA/VAc latex (5% EC) had the best controlled-release ability. Therefore, controlled-release urea encapsulated by EC/BA/VAc latex has many potential applications in agricultural industry.
EN
Soybean curd is a very popular food containing high-quality protein, polyunsaturated fats, vitamins, minerals and other nutrients. This study aims to prepare porous soybean curd xerogels via a vacuum freeze drying method and uses them as adsorbents to remove congo red from aqueous solutions. The morphology and functional groups of the soybean curd xerogels were characterized using scanning electron microscopy and Fourier transform infrared spectroscopy, respectively. The adsorption properties of congo red onto the soybean curd xerogels were carried out through investigating the influencing experimental parameters such as the drying method, solution pH, adsorbent dose, contact time and temperature. The results showed that the adsorption isotherm data were fitted well to the Freundlich isotherm. Adsorption kinetics of congo red onto the soybean curd followed the pseudo-second-order kinetic model. The thermodynamic parameters, such as ΔG°, ΔH° and ΔS°, were also determined.
EN
A novel and highly-efficient amino-acid-based collector, α-ethylenediamine lauric acid (α-EDA-LA), was studied to selectively beneficiate carbonate-containing refractory hematite ores. Single mineral and synthetic mixture flotation tests were carried out to investigate its floating performance. Zeta potential, fourier transform infrared spectroscopy (FTIR) and Density Functional Theory-based molecular simulation were used to identify the adsorption mechanism. The flotation results showed that quartz could be collected effectively at pH 11.0-12.0 in the reverse flotation. For siderite, the recovery peaked at 83.4% at pH 8.0, where siderite presented different floatability from magnetite and hematite. Exploiting such difference, the separation of siderite could be achieved. Zeta-potential measurements showed that α-EDA-LA adsorption on the surfaces of siderite and quartz decreased the corresponding zeta potentials at pH of 8.0-10.0 and 8.0-12.0, respectively. This means the adsorption overcome the electrostatic repulsion between α-EDA-LA and the mineral surfaces. The molecular simulation indicated that no chemisorption took place between α-EDA-LA and quartz. FTIR analysis suggested that α-EDA-LA was adsorbed on quartz via hydrogen bonding. The adsorption of α-EDA-LA on siderite surface was dominated by chemisorption, while further enhanced by hydrogen bonding. This study filled the gap in the research on siderite flotation reagents and its adsorption mechanism.
EN
The effect of galvanic interaction between pyrite and galena on xanthate adsorbing on the galena surface has been investigated by means of density functional theory (DFT) and cyclic voltammetric measurements. The calculated results show that differences in the contact site and contact distance between galena and pyrite can affect the intensity of the galvanic interaction, and the relationship between the intensity of galvanic interaction and the adsorption ability of xanthate on galena surface has been studied in detail. In general, the galvanic interaction between pyrite and galena surface can enhance the adsorption of xanthate on the galena surface. The adsorption energies of xanthate on the galena surface decrease with the decrease of contact distance, and when the contact distance is lower than 4 Å, the adsorption energies decrease significantly at Pb-Pb, Pb-S and S-S sites. In particular, at the contact distance of 3 Å, a sharp decrease of adsorption energy is observed at the Pb-Pb contact site; in this case, the negative shift of the Pb-S bonding range and DOS non-locality at Pb-Pb contact site are significantly greater than that of the S-S or Pb-S contact sites. The cyclic voltammetric measurements reveal that the galvanic interaction between galena and pyrite improves the adsorption of xanthate on galena surface, which is in good agreement with the DFT results.
EN
The depressing properties of sodium polyacrylate (PA-Na) for calcite from scheelite were studied by microflotation experiments, zeta potentials, X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculation. Flotation results revealed that the selective depression effect of PA-Na was better than that of sodium silicate (Na2SiO3), and PA-Na can depress calcite more effectively than scheelite. The flotation recovery of scheelite and calcite kept at about 75% and 15% respectively at the pulp pH 9.3~9.6 and PA-Na concentration from 37.5 mg/dm3 to 50 mg/dm3. The zeta potentials of the minerals were significantly altered and the zeta potential of calcite became more negative than scheelite. XPS analysis deduced the occurrence of chemisorption between PA-Na and mineral surfaces, and the chemisorption of PA-Na on calcite was stronger than on scheelite. The results from DFT calculation demonstrated that the absolute value of the adsorption energy in the presence of PA-Na on the surface of calcite {104} was larger than on the surface of scheelite {111}. With the combination of the analysis, it could be concluded that calcite was more easily depressed than scheelite, and this finding remarkably matched with the microflotation experimental results. Furthermore, by using PA-Na as depressant, the flotation separation of scheelite from calcite can be achieved by controlling the flotation pH and PA-Na dosage.
EN
This paper is aimed at investigating activation behaviors for coal-series kaolin using fluidized bed calcination as a novel method. The properties of calcined products at different temperature by fluidized bed calcination were evaluated by determination of weight loss rate, whiteness, chemical oxygen demand (COD), aluminum dissolution degree. The thermal behaviors and reaction mechanism were characterized by thermo gravimetric-differential scanning calorimetry (TG-DSC), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), particle size distribution (PSD) and scanning electron microscopy (SEM). The results showed that calcination temperature was essential factor determining the properties and crystallinity of calcined products using fluidized bed calcination. Coal-series kaolin transformed into irregular and amorphous metakaolin with excellent properties as calcined at 600-900 °C, which attributed to the dehydroxylation of kaolinite and combustion of carbon/organic matter. Calcined kaolin eliminated activity ascribed to the recrystallization into mullite when calcination temperature was over 1000 °C. It was believed that fluidized bed calcination was an efficient thermal activation technology for coal-series kaolin and the calcination temperature should be controlled accurately.
EN
Iron ore tailing is a kind of hazardous solid waste produced by iron and steel industry. In order to separate and recycle iron from the magnetic preconcentrate of an iron ore tailing, an innovative technological route of fluidized magnetization roasting followed by low-intensity magnetic separation was proposed in this paper. The effects of roasting temperature, dosages of reducing gas CO and fluidizing gas N2 on recovery rate of iron were carried out and optimized. The results showed that the hematite was almost reduced to magnetite by a gas mixture of 4 m3/h CO and 1 m3/h N2 at roasting temperature of 540 °C. Under the optimized conditions, a magnetic concentrate assaying 61.4 wt% Fe with a recovery rate of 81.8% was obtained from the magnetic preconcentrate of an iron ore tailing. The iron chemical phase, X-ray diffraction (XRD), and optical metallographic microscope analyses revealed that siderite was converted to magnetite successfully after roasting, and some coarse magnetite-hematite interlocking particles were formed due to insufficient reaction time, which could also be recovered by magnetic separation after liberating from gangue minerals.
EN
The motion characteristics of mineral particles in a modified fluidized bed (mFB) with inclined plates have been studied both theoretically and experimentally. A particulate sedimentation model is built on the fluidization superficial velocity, terminal settling velocity, the device dimensions, the particle properties, and the volume fraction of the particulate suspensions in the inclined channel, which is to describe the motion behavior of particles in mono-disperse suspensions. The experimental particles are a mixture of silica and sand particles with the sizes in the range of 425 - 710 μm and 710 - 880 μm, respectively. Further, the model is extended to describe bi-disperse suspensions. The experimental system is established to be consistent with the theoretical arrangements, aiming to provide more accurate measurements. Specifically, the prediction results are in good agreement with the experimental data with the absolute deviation less than 11%. The results showed that the average solid volume fraction in the inclined channel fluctuates slightly for a given total solid inventory. The theoretical model is of certain practical significance for applications of this system to the classification, separation, and desliming of minerals.
16
EN
A scheme for real-time optical demultiplexing is proposed by utilizing the time-broadened and linearly chirped pulses instead of the conventional mode-locked pulses. The copies of the optical-time-division-multiplexed signal are acquired through a dual-pump parametric gate and used as the parametric multicast block. Simulation results show that the demultiplexing from 160 Gb/s down to sixteen 10 Gb/s tributaries can be achieved only by using a sampling source of 10 GHz. The proposed scheme can effectively reduce the complexity of parallel processing, and find important applications in the high-speed all-optical signal processing.
EN
The study area in the West Junggar Basin is known to be rich in hydrothermal gold deposits and occurrences, even though there has been minimum exploration in the area. It is here hypothesised that this area could host more gold deposits if mineral exploration methods were to be reinforced. This research is aimed at identifying geochemical anomalies of Au, and determining possible factors and conditions which facilitate the formation of anomalies by referring to As and Hg as gold pathfinders. Geostatistical analyst techniques have been applied to 9,852 stream sediments and bedrock data collected on a total surface of 1,280 km2 of West Junggar, Xinjiang (northwest China). The kriging interpolation and quantile-quantile plot methods, combined with statistical methods, successfully identified both Au and its pathfinders’ anomalies. In the present study, median was considered as background values (10.2 ppm for As, 9.13 ppb for Hg and 2.5 ppb for Au), whereas the 95th percentile were threshold values (28.03 ppm for As, 16.71 ppb for Hg and 8.2 ppb for Au) and values greater than thresholds are geochemical anomalies. Moreover, the high concentrations of these three discovered elements are caused primarily by hydrothermal ore mineralisation and are found to be controlled mainly by the Hatu and Sartohay faults of a northeast-southwesterly direction as well as their related secondary faults of variable orientation, which facilitate the easy flow of hydrothermal fluids towards the surface resulting in the formation of geochemical anomalies. Most of anomalies concentration of Au are found near the mining sites, which indicates that the formation of new Au anomalies is influenced by current or previous mining sites through geological or weathering processes. In addition, the low concentration of gold and its pathfinders found far from active gold mine or faults indicates that those anomalies are formed due to primary dispersion of hosting rock.
18
Content available remote A New Approach to Security Analysis of Smart Home Authentication Systems
EN
ZigBee networks, with their characteristics of high availability, low power consumption and cost-effective devices, are perfectly appropriate to construct Wireless Sensor Networks (WSNs). Also, the natures of WSN listed above bring significant benefits over traditional communication networks used in smart home systems. A smart home system is meant to improve the quality of life through offering various automated, interactive and comfortable services, such as sensing and communicating the family member’s health information with their doctors, or remotely controlling the appliances via cellular phones, emails etc. These critical services make the security of personal privacy and the authority of control commands vital issues in Smart Home environments. While the smart home system suffer from many attacks, the security of the smart home system become an important and hard problem. And the authentication is the first parclose to the security of the system. However, according to our analysis, most system fail to achieve the authentication between the user and the device, Which leading to the compromise of the whole system. In this paper, we analyze the authentication challenges between the user the device in WSNs and in smart home Systems. To thoroughly detect, defense and foresee the authentication vulnerabilities existing in smart home networks, we proposed a security evaluation technique based on attack graph generation. We discuss the distinction between the attack graphs deployed in traditional networks and in smart home networks. Furthermore, we apply this technique into an experiment, and the results prove its practicality. And we then suggest a widely used protocol to the smart home authentication system.
EN
Production parameters have been established to play a fundamental role in dictating the physical characteristics and sensing properties of knitted sensors. This research studied the influence of elastic yarn type and rib fabric structure variation on the physical, tensile and conductive properties and sensitivity performance of knitted underwear strain sensors to be used for breathing mensuration. Four different structures in 1×1, 1×2, 1×3 and 2×2 mock ribs were knitted using covered elastic (CY) and bare strand elastic yarn (BS) combinations. These two parameters proffered unique physical, conductive and tensile characteristics to the samples. Wear and machine tests were conducted to ascertain the sensor’s piezoresistive responses. The machine test showed a higher piezoresistive response, with an average peak value (APV) from 1.70 Ω to 0.24 Ω, while those for the wear test recorded were around 0.0110 Ω to 1.867 Ω for all sample categories. However, sensors knitted with covered elastic yarns produced the best breathing test results (APV of 1.089 Ω – 1.86 Ω) compared to bare strand elastic yarns (APV 0.0027 Ω – 0.0790 Ω) when used in a wearable environment. Fabric structure variation had influences on both conductive and tensile characteristics; however, the effects on the piezoresistive response were negligible. The influences of the unique characteristics provided by these core parameters on sensor resistance values, piezoresistance, aging, ease of deformation and dimensional stability have also been discussed.
PL
W pracy badano wpływ struktury dzianiny i rodzaju przędzy na właściwości fizyczne, rozciągające i przewodzące oraz czułość dzianinowych czujników umieszczonych w wyrobach bieliźnianych. Czujniki mają znaleźć zastosowanie w pomiarach napięcia oddechowego. Badaniom poddano cztery różne dzianiny: 1 × 1, 1 × 2, 1 × 3 i 2 × 2, w procesie dziania wykorzystano kombinacje przędz elastycznych powlekanych (CY) i niepowlekanych (BS). Dało to unikalne właściwości fizyczne, przewodzące i rozciągające próbki. W celu ustalenia reakcji piezorezystywnych czujnika przeprowadzono dwa rodzaje testów. Test maszynowy wykazał wyższą reakcję piezorezystywną, ze średnią wartością szczytową (APV) od 1,70 Ω do 0,24 Ω, podczas gdy dla testu zużycia zarejestrowano około 0,0110 Ω do 1,867 Ω dla wszystkich kategorii próbek. Jednakże, czujniki dzianinowe z powleczonymi przędzami elastycznymi dały najlepsze wyniki testu oddychania (APV o wartości 1.089 Ω – 1.86 Ω) w porównaniu do niepowleczonych przędz elastycznych (APV 0,0027 Ω – 0,0790 Ω), podczas stosowania ich w środowisku noszenia. Zmiana struktury dzianiny miała wpływ na właściwości przewodzące i rozciągające, jednak wpływ na reakcję piezorezystywną był znikomy. Omówiono również wpływ unikalnych cech tych podstawowych parametrów na wartości rezystancji czujnika, odporność na piezorezystencję, starzenie, łatwość deformacji i stabilność wymiarową.
EN
In this paper a composite reinforced with biaxial warp-knitted fabric and epoxy resin was manufactured by applying vacuum assisted resin transfer moldings (VARTM). The quasi-static tensile behaviour was experimentally tested in 0° and 90° directions, respectively. A finite element model of biaxial warp-knitted composites was developed on a meso-scale. The tensile behaviour of the composites was numerical simulated and compared with the experimental results. It showed that there is an approximate agreement between experimental and numerical results. There are maximum errors sum of squares of 14.52% and 33.29%. The finite element model of biaxial warp-knitted composites has higher accuracy, which can be used to study the static and dynamic mechanical properties.
PL
Wykonano kompozyt wzmocniony dwuosiową dzianiną osnowową i żywicą epoksydową z zastosowaniem próżniowego przenoszenia żywicy (VARTM). Quasi-statyczne właściwości rozciągania badano doświadczalnie odpowiednio w kierunkach 0° i 90°. Opracowano model skończonych elementów dwuosiowych kompozytów z dzianinami. Dokonano symulacji numerycznej zachowania kompozytów podczas rozciągania, a następnie porównano wyniki teoretyczne z wynikami eksperymentalnymi. Wykazano, że istnieje przybliżona zgodność między wynikami eksperymentalnymi i liczbowymi. Stwierdzono, że błędy maksymalne błędy kształtują się na poziomie 14,52% i 33,29%. Zaprezentowany model elementów skończonych ma wysoką dokładność i można go wykorzystać do badania statycznych i dynamicznych właściwości mechanicznych kompozytów.
first rewind previous Strona / 11 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.