Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Satellite Laser Ranging (SLR) is a modern technique used in various research areas and applications related to geodesy and geodynamics. It is commonly used for tasks such as establishing the International Terrestrial Reference Frame (ITRF), monitoring Earth Orientation Parameters (EOP), determining the geocenter, measuring fundamental physical constants, calibrating microwave tracking techniques, conducting time transfer experiments, and studying gravitational and general relativistic effects. Laser measurements of the LARES and LAGEOS satellites are used to determine the relativistic effects acting on these satellites. The objective of the present research is to analyze the perturbing forces of relativistic origin (Schwarzschild, de Sitter and Lense-Thirring effects) acting on the LARES, LAGEOS-1 and LAGEOS-2 satellites. By using data from fifteen SLR measurement stations, the precise orbits of these satellites were determined over a span of 840 hours using the GEODYN II orbital software package. The calculation process used a set of procedures, models of forces, and constants that are currently recommended by the International Earth Rotation and Reference Systems Service (IERS) and the International Laser Ranging Service (ILRS). Based on the precise orbits of the LARES, LAGEOS-1, and LAGEOS-2 satellites, calculations were made to determine the values of relativistic accelerations acting on these satellites. These values oscillate with a period equal to half of the orbital period for the de Sitter and Lense-Thirring effects, and a quarter of the orbital period for the Schwarzschild effect.
PL
Technologia skanowania laserowego jest powszechnie stosowana w inwentaryzacji obiektów kultury. Ciągły wzrost technologiczny pozwala na wykorzystanie złożonych modeli cyfrowych 3D przez coraz większą liczbę odbiorców. Jedną z odmian zastosowania modeli jest tzw. HBIM (HistoricalBIM/HeritageBIM). W artykule skupiliśmy się na pierwszym z etapów zarządzania takim projektem, jak inwentaryzacja. Celem pracy jest określenie przydatności stosowania modelowania 3D na potrzeby analizy obiektów kultury oraz analiza dokładności modelu. Na podstawie wykonanego modelu przeprowadzono analizę oświetlenia kościoła. Przedstawiona metoda może być interpretowana pod kątem technicznym oraz humanistycznym (w przypadku analizy sacrum).
EN
The laser scanning technology is a commonly used method in the inventory of cultural objects. Continuous technological growth allows the use of complex digital 3D models by an increasing number of recipients. One of the varieties of model applications is the so-called HBIM (HistoricalBIM/HeritageBIM). In the article, we focused on the first stage of project management, which is inventory. The aim of the research is to determine the suitability of using 3D modeling for the purposes of analyzing cultural objects and analyzing the accuracy of the model. The lighting of the church was analyzed on the basis of the model. The presented method can be interpreted from a technical and humanistic point of view (in the case of the analysis of the sacred).
EN
Modern space measurement techniques like SLR, DORIS, VLBI and GNSS are used to study the tectonic plates. The determination of plate motion parameters (Φ, Λ, ω) from various geodetic measurements is outlined. This paper is the third part of our studies on estimating geodetic and geodynamic parameters; it regards an accuracy analysis of the determined Φ, Λ, ω parameters which describe motions of the tectonic plates using Very Long Base Interferometry (VLBI) technique. Prior to this, SLR and DORIS space measurement techniques were examined by authors. The study is based on the velocities of station positions, as included in a realization of the International Terrestrial Reference System - ITRF2008 for VLBI technique, published by the International Earth Rotation and Reference Systems Service (IERS). This model is made subject to an analysis in association with the APKIM2005 model. Six big plates, namely: Eurasian (EUAS), African (AFR), Australian (AUS), North American (NOAM), Pacific (PACF) and Antarctic (ANTC) were analysed. The results obtained in this analysis were compared with our previous estimations based on DORIS and SLR techniques and estimated according to the APKIM2005 model. Generally, all our three solutions based on SLR, DORIS and VLBI measurement techniques were found to be consistent.
EN
One of the primary objectives of satellite geodesy is the determination of coordinates of the satellite laser ranging (SLR) stations. This task is conducted by using laser ranging techniques. The main goal of the current study was to assess the influence of using varied values of the tidal parameters (Love h2 and Shida l2 numbers) on the determination of the positions of chosen SLR stations. The obtained results are presented for coordinates determination conducted for six SLR stations: Mt Stromlo (no. 7825, Australia), Matera (no. 7941, Italy), Grasse (no. 7845, France), McDonald (no. 7080, USA), Arequipa (no. 7403, Peru) and Beijing (no. 7249, China). The analysis covers SLR data for 2 satellites (LAGEOS1 and LAGEOS2), which were observed for 10 consecutive years (from 2008 to 2018). The analysis was performed using the ITRF2014 reference frame in two scenarios of calculations. In scenario 1, the SLR stations coordinates were calculated using the nominal values as per the International Earth Rotation and Reference System Service (IERS) standards recommendation of the Love/Shida numbers: h2 = 0.6078, l2 = 0.0847. In scenario 2, the coordinates were estimated using the harnessing values of the Love/Shida numbers (h2 = 0.6140 and l2 = 0.0876), which were proposed by authors in a previous publication. The effect of the application of different values of the Love/Shida numbers for the determination of SLR stations coordinates was scrutinized.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.