This paper describes a number of experiments to compare and validate the performance of machine learning classifiers. Creating machine learning models for data with wide varieties has huge applications in predictive modelling across multiple domain of science. This work reviews state of the art techniques in machine learning classifiers methods with several extent of magnitude in statistics and key findings that will be helpful in establishing best methodological practices for class predictions. Comprehensive comparative review analysis with statistical validations for various machine learning algorithm for SVM, Bagging, Boosting, Decision Trees and Nearest Neighborhood algorithm on multiple data sets is carried out. Focus on the statistical analysis of the results using Friedman-Test and Wilcoxon Test as well as other interpretative metrics like classification rate, ROC, F-measure are evaluated to benchmark results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.