Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Finding the expected revenues in the queueing systems (QS) of open Markov G-networks of two types, with positive and negative customers and with positive customers and signals, has been described in the paper. A negative customer arriving to the system destroys one positive customer if at least one is available in the system, thus reducing the number of positive customers in the system by one. The signal, coming into an empty system (where there are no positive customers), does not have any impact on the network and immediately disappears from it. Otherwise, if the system is not empty, when it receives a signal, the following events can occur: the incoming signal instantly moves the positive customer from one QS into another with a certain probability, or with the other probability, the signal is triggered as a negative customer.
EN
To solve the problem of determining the memory capacity of the information systems (IS), it was proposed to use a stochastic model, based on the use of HM (Howard-Matalytski) - queueing networks with incomes. This model takes into account the servicing of requests along with their volumes, the ability to change the volumes of the requests over time and the possibility of damaging IS nodes and their repairs, so servicing of demands can be interrupted randomly. The expressions are generated for the mean (expected) values of total requests volumes in the IS nodes.
EN
The investigation of a Markov queueing network with positive and negative customers and positive customers batch removal has been carried out in the article. The purpose of the research is analysis of such a network at the non-stationary regime, finding the time-dependent state probabilities and mean number of customers. In the first part of this article, a description of the G-network operation is provided with one-line queueing systems. When a negative customer arrives to the system, the count of positive customers is reduced by a random value, which is set by some probability distribution. Then for the non-stationary state probabilities a Kolmogorov system was derived of differencedifferential equations. A technique for finding the state probabilities and the mean number of customers of the investigated network, based on the use of an apparatus of multidimensional generating functions has been proposed. The theorem about the expression for the generating function has been given. A model example has been calculated.
EN
The article presents research of an open queueing network (QN) with the same types of customers, in which the total number of customers is limited. Service parameters are dependent on time, and the route of customers is determined by an arbitrary stochastic transition probability matrix, which is also dependent on time. Service times of customers in each line of the system is exponentially distributed. Customers are selected on the service according to FIFO discipline. It is assumed that the number of customers in one of the systems is determined by the process of birth and death. It generates and destroys customers with certain service times of rates. The network state is described by the random vector, which is a Markov random process. The purpose of the research is an asymptotic analysis of its process with a big number of customers, obtaining a system of differential equations (DE) to find the mean relative number of customers in the network systems at any time. A specific model example was calculated using the computer. The results can be used for modelling processes of customer service in the insurance companies, banks, logistics companies and other organizations.
EN
In the article a queueing network (QN) with positive customers and a random waiting time of negative customers has been investigated. Negative customers destroy positive customers on the expiration of a random time. Queueing systems (QS) operate under a heavy-traffic regime. The system of difference-differential equations (DDE) for state probabilities of such a network was obtained. The technique of solving this system and finding mean characteristics of the network, which is based on the use of multivariate generating functions was proposed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.