Abnormal electrical activity of heart can produce a cardiac arrhythmia. The electrocardiogram (ECG) is a non-invasive technique which is used as a diagnostic tool for cardiac diseases. Non-stationarity and irregularity of heartbeat signal imposes many difficulties to clinicians (e.g., in the case of myocardial infarction arrhythmia). Fortunately, signal processing algorithms can expose hidden information within ECG signal contaminated by additive noise components. This paper explores a method of de-noising ECG signal by the discrete wavelet transform (DWT) and further detecting arrhythmia by estimated statistical parameters. Parameters of the de-noised ECG signals were used to form an input data vector determining whether the examined patient suffers from a cardiac arrhythmia or not. Input data were transformed using selected linear methods in order to reduce dimension of the input vector. A neural network was used to detect illness. Compared with the results of recent studies, the proposed method provides more accurate diagnosis based on the examined ECG signal data.
The paper presents a method of processing measurement data due to remove slowly varying component of the trend occurring in the recorded waveforms. Comparison of computational complexity and trend removal efficiency between some commonly used methods is presented. The impact of these procedures on probability distribution and power spectral density is shown. Effectiveness and computational complexity of these methods depend essentially on nature of the removed trend. This paper describes several procedures: Moving Average Removal (MAR), fitting a polynomial of degree appropriate to the analyzed data, Empirical Mode Decomposition (EMD).
PL
W pracy przedstawiono sposób przetwarzania danych pomiarowych w celu usunięcia wolnozmiennej składowej trendu występującego w rejestrowanych przebiegach. Porównano kilka często stosowanych w tym celu metod pod względem ich złożoności obliczeniowej oraz skuteczności w usuwaniu trendu. Pokazano wpływ tych procedur na rozkład prawdopodobieństwa wartości chwilowych oraz przebieg gęstości widmowej mocy. W ogólności operację usuwania trendu możemy traktować jako filtrację górnoprzepustową danych pomiarowych. W celu usunięcia trendu można użyć filtru górnoprzepustowego (analogowego lub cyfrowego) już na etapie akwizycji danych pomiarowych. Jednakże często mamy do czynienia z danymi, w których składowa trendu jest potrzebna do przeprowadzania innych analiz i nie może być usunięta na etapie rejestracji danych pomiarowych. Ponadto, może mieć charakter niestacjonarny i metody filtracji górnoprzepustowej nie będą skuteczne. W takich przypadkach należy rozważyć inne, często bardziej zaawansowane metody. Skuteczność i złożoność obliczeniowa takich metod zależy istotnie od charakteru usuwanego trendu. W pracy opisano procedurę usuwania średniej kroczącej (ang. Moving Average Removal – MAR), metody o niskiej złożoności obliczeniowej, ale dającej zadowalające rezultaty w dużej liczbie potencjalnych zastosowań. Rozważono usuwanie trendu przez dopasowanie wielomianem odpowiedniego stopnia do analizowanych danych pomiarowy. Procedura ta może być powtarzana kilkukrotnie, nawet ze zwiększaniem stopnia wielomianu przy każdym z kroków, aż do uzyskania przebiegu, w którym usunięto składową trendu. Część pracy poświęcono prezentacji bardziej złożonych obliczeniowo metod, które zostały rozwinięte dopiero w ostatnich latach i wymagają znacznie bardziej intensywnych obliczeń.
Sensing technology has been developed for detection of gases in some environmental, industrial, medical, and scientific applications. The main tasks of these works is to enhance performance of gas sensors taking into account their different applicability and scenarios of operation. This paper presents the descriptions, comparison and recent progress in some existing gas sensing technologies. Detailed introduction to optical sensing methods is presented. In a general way, other kinds of various sensors, such as catalytic, thermal conductivity, electrochemical, semiconductor and surface acoustic wave ones, are also presented. Furthermore, this paper focuses on performance of the optical method in detecting biomarkers in the exhaled air. There are discussed some examination results of the constructed devices. The devices operated on the basis of enhanced cavity and wavelength modulation spectroscopies. The experimental data used for analyzing applicability of these different sensing technologies in medical screening. Several suggestions related to future development are also discussed.
In this paper we showed the method of resistive gas sensors data processing. The UV irradiation and temperature modulation was applied to improve gas sensors’ selectivity and sensitivity. Noise voltage across the sensor’s terminals (proportional to its resistance fluctuations) was recorded to estimate power spectral density. This function was an input data vector for LS-SVM (least squares – support vector machine) algorithm, which predicted a concentration of gas present in sensor’s ambient atmosphere. The algorithm creates a non-linear regression model at learning stage. This model can be used to predict gas concentration by recording resistance noise only. We have proposed a fast method of selecting LS-SVM parameters to determine high quality model. The method utilizes a behavior of immune system to determine optimal parameters of the LS-SVM algorithm. High accuracy of the applied method was proved for the recorded experimental data.
PL
W artykule pokazano metodę przetwarzania danych z rezystancyjnych czujników gazów, stosowaną do wykrywania gazów. W celu zwiększenia czułości i selektywności czujników zastosowano modulację temperaturową oraz oświetlenie diodą LED UV aby zebrać więcej danych. Szumy napięciowe rejestrowane na zaciskach czujnika (proporcjonalne do fluktuacji jego rezystancji) zostały wykorzystane do wyznaczenia gęstości widmowej mocy. Ta funkcja stanowiła wektor danych wejściowych dla algorytmu maszyny wektorów nośnych według kryterium najmniejszych kwadratów (LS-SVM), umożliwiając określenie stężenia gazu występującego w atmosferze otaczającej czujnik. Nieliniowy charakter algorytmu pozwala na tworzenie w fazie uczenia modelu na podstawie danych uzyskanych z pomiarów za pomocą metody odniesienia. Pokazano szybki sposób doboru optymalnych parametrów algorytmu LS-SVM, gwarantujących skuteczność szacowania stężenia gazu. W badaniach wykorzystano metodę symulującą działanie systemu odpornościowego. Analiza danych eksperymentalnych potwierdziła skuteczność prezentowanej metody.
This paper analyses the effectiveness of determining gas concentrations by using a prototype WO3 resistive gas sensor together with fluctuation enhanced sensing. We have earlier demonstrated that this method can determine the composition of a gas mixture by using only a single sensor. In the present study, we apply Least-Squares Support-Vector-Machine-based (LS-SVM-based) nonlinear regression to determine the gas concentration of each constituent in a mixture. We confirmed that the accuracy of the estimated gas concentration could be significantly improved by applying temperature change and ultraviolet irradiation of the WO3 layer. Fluctuation-enhanced sensing allowed us to predict the concentration of both component gases.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.