Znaleziono wyników: 20
Liczba wyników na stronie
Wyniki wyszukiwania
effectiveness of the proposed solution is confirmed by experimental studies.
and feature extraction for audio and image data. Using various meta heuristics the system is optimized with regards to different data communication criteria. The system was implemented on an FPGA platform with use of ImpulseC hardware description language.
Rdzenie połączone są ze sobą za pomocą sieci wewnątrzukładowej (ang. Network on Chip, NoC) o architekturze siatki. W artykule opisano pokrótce autorskie oprogramowanie służące do generowania kodu sieci wewnątrzukładowej. Graficzny interfejs użytkownika został zaprezentowany na rys. 1. Narzędzie ma za zadanie dokonywać odwzorowania wybranych funkcjonalności do poszczególnych rdzeni z wykorzystaniem takich meta-heurystyk jak algorytmy genetyczne, symulowane wyżarzanie, poszukiwanie losowe czy algorytmu gradientowego. Jako kryterium optymalizacji można wybrać minimalizację całkowitego przesyłu danych, minimalizację maksymalnej liczby danych transmitowanych przez pojedyncze łącze, a także minimalizację odchylenia standardowego rozmiaru strumieni transmitowanych przez poszczególne łącza. Przykładowe wyniki optymalizacji losowej dla sieci wewnątrzukładowej zostały przedstawione w tab. 1, natomiast wyniki optymalizacji dla sieci wewnątrzukładowej wykorzystującej inne podejścia - w tab. 2. Dla systemu zoptymalizowanego w ten sposób został wygnerowany opisujący go kod w języku ImpulseC, który następnie posłużył do syntezy sprzętowej na układzie FPGA z rodziny Xilinx Virtex 5. Zajętość układu XC5VSX50T dla trzech wykorzystanych klasyfikatorów została przedstawiona na rys. 3. Z kolei tab. 3 przedstawia liczbę zasobów wykorzystanych przez narzędzie syntezy wysokiego poziomu dla tych klasyfikatorów. Technika przedstawiona w publikacji umożliwia określenie warunków i ograniczeń implementacji sprzętowej systemu służącego klasyfikacji danych multimedialnych.
Presented method belongs to the group of appearance-based approaches, employing template matching working in the reduced feature space obtained by Linear Discriminant Analysis. The method deals with all types of signs, regarding their shape and color in contrast to commercial systems, installed in higher-class cars, that only detect the round speed limit signs and overtaking restrictions. Finally, we present some experiments performed on a benchmark databases with different kinds of occlusion.
reduction, reduction of spatial low frequency spectral components and fusion of spectral features conditioned on average intensities. Presented experiments were conducted on image databases Yale B and Yale B+.
transformacie kosinusowej połączonej z redukcją gradientu jasności, eliminację niskoczęstotliwościowych komponentów widma i fuzji komponentów widma zależnej od średniej jasności obrazu. Jako uzupełnienie, przedstawiono eksperymenty przeprowadzone na bazach Yale B i Yale B+.
intended to work without the need for user supervision and to be widely customizable to meet an individual’s requirements. In this paper, the fundamental characteristics of the system are presented including a simplified representation of its modules. Methods and algorithms that have been investigated so far alongside those that could be employed in the future are described. In order to show the effectiveness of the methods and algorithms described, some experimental results are provided together with a concise explanation.
enough high potential to be implemented in a practical realization of such a system. The article describes three main elements of modern surveillance system, namely an adaptive background model, object extraction and tracking. Finally, we describe several recent benchmark datasets that can be used to test real systems.
processing takes place in this space. Extracted features are maximally correlated in canonical variates space, making it possible to expose, investigate and model latent relationships between measured variables. In the paper the CCA is implemented along two directions (along rows and columns of pixel matrix of dimension M x N) using a cascade scheme. The first stage of transformation proceeds along rows of data matrices. Its results are reorganized by transposition. These reorganized matrices are inputs to the second processing stage, namely basic CCA procedure performed along the rows of reorganized matrices, resulting in fact in proceeding along the columns of input data matrix. The so called cascading 2DCCA method also solves the Small Sample Size problem, because instead of the images of size MxN pixels in fact we are using N images of size M x 1 pixels and M images of size 1 x N pixels. In the paper several numerical experiments performed on FERET and Equinox databases are presented.
Unlike the cases reported in the literature [5,11,12] the compression being an application of three-dimensional PCA is performed on image blocks organized as three-dimensional structures (see Fig.1). In the first step, an image, which is stored as a three-dimensional matrix is decomposed into non-overlapping 3D blocks. Then each block is projected into lower-dimensional representation (1D or 2D) according to the chosen strategy: concatenation of rows, concatenation of columns, integration of rows, integration of columns [13] and concatenation of slices. Next, the blocks are centered (subtraction of mean value) and covariance matrices are being calculated. Finally, the eigenproblem is being solved on the covariance matrices giving a set of eigenvalues and eigenvectors, which are a base for creation of transformation matrices. Each block is then multiplied by respective transformation functions created from truncated eigenvectors matrices giving its reduced representation. The experimental part of the paper shows the comparison of strategies of calculating covariance matrices in the aspect of image reconstruction quality (evaluated by Peak Signal-to-Noise Ratio).
wykonanie obliczeń dla danych zagregowanych, bez ich rozdzielania na kanały. W pierwszym kroku algorytmu obraz kolorowy (macierz trójwymiarowa) jest dekomponowany na niezależne sub-bloki (3D). Następnie każdy z bloków jest poddawany projekcji 1D lub 2D zgodnie z przyjętą strategią: poprzez konkatenację wierszy, konkatenację kolumn, integrację wierszy, integracje kolumn lub konkatenację warstw. W kolejnym kroku są one centrowane i obliczane są odpowiednie macierze kowariancji. Następnie obliczany jest ich rozkład, który służy do stworzenia macierzy transformacji 3D PCA. Za ich pomocą przeprowadzana jest redukcja wymiarowości danych obrazowych. W przypadku omawianym w niniejszej pracy kompresji poddany jest obraz RGB i oceniana jest jakość rekonstrukcji (PSNR) jako funkcja liczby pozostawionych współczynników przekształcenia.
hard drive can be taken as forensic evidence of possible crime. The main purpose of the method presented in the paper is to detect, localize and segment stamps (imprints) from the scanned document. The problem is not trivial since there is no such thing like stamp standard. There are many variations in size, shape, complexity and ink color. It should be remembered that the scanned document may be degraded in quality and the stamp can be placed on a relatively complicated background. The algorithm consists of several steps: color segmentation and pixel classification, regular shapes detection, candidates segmentation and verification. The paper includes also the initial results of selected experiments on real documents having different types of stamps.
retrieval. To achieve such a goal two general strategies (sequential and parallel) for joining elementary queries were proposed. Usually they are employed to construct a processing structure, where each image is being decomposed into regions, based on shapes with some characteristic properties - colour and its distribution. In the paper we provide an analysis of this proposition as well as the exemplary results of application in the Content Based Image Retrieval problem. The original contribution of the presented work is related to different fusions of several shape and colour descriptors (standard and non-standard ones) and joining them into parallel or sequential structures giving considerable improvements in content-based image retrieval. The novelty is based on the fact that many existing methods (even complex ones) work in single domain (shape or colour), while the proposed approach joins features from different areas.
tracking of suspicious objects that have been left unattended. The mathematical principles related to background model creation and detection tuning are included. Developed algorithm has been implemented as a working model involving OpenCV library and tested on benchmark data taken from real visual surveillance system.
there is no application for still images, that could simulate and test multiple methods both steganographic and steganalytic, thus the purpose of this paper is to propose a software for hiding and detecting data in digital images that uses several different adjustable steganographic techniques, allows testing their security level with steganalysis and provides simple plug-in architecture. The processing can be performed in both batch and parallel form. The application can be operated even by relatively inexperienced users since it provides legible graphical user interface (conforming with drag-and-drop technology) and it can be employed both in research and in educational areas.
steganalizę. Z drugiej strony, na rynku brakuje oprogramowania, które pozwalałoby na symulowanie i badanie różnych innych metod steganoraficznych i steganalitycznych. Powyższe potrzeby wymusiły powstanie oprogramowania opisanego w niniejszej pracy, które pozwala na ukrywanie informacji w danych graficznych, przeprowadzanie procedury steganalizy i umożliwia użycie tzw. wtyczek (plug-in). W opracowanym laboratorium przetwarzanie może odbywać się w sposób zarówno sekwencyjny, jak i równoległy. Aplikacja może być obsługiwana przez stosunkowo mało doświadczonych użytkowników, ponieważ dysponuje graficznym interfejsem użytkownika (zgodnym z technologią drag-and-drop). Może być wykorzystana w badaniach naukowych i edukacji.
most popular image formats – JPEG/JFIF and JPEG-2000 in the aspect of content-based image retrieval (CBIR). Since the problem of CBIR takes a special interest nowadays, it is clear that new approaches should be discussed. To achieve such goal a unified descriptor is proposed based on low-level visual features. The algorithm operates in both DCT and DWT compressed domains to build a uniform, format-independent index. It is represented by a three-dimensional color histogram computed in CIE L*a*b* color space. Sample software implementation employs a compact descriptor calculated for each image and stored in a database-like structure. For a particular query image, a comparison in the feature-space is performed, giving information about images' similarity. Finally, images with the highest scores are retrieved and presented to the user. The paper provides an analysis of this approach as well as the initial results of application in the field of CBIR.
Analysis is performed using two-dimensional Principal Component Analysis and Linear Discriminant Analysis and reduction by means of two-dimensional Karhunen-Loeve Transform. The paper presents mathematical principles together with some results of recognition experiments on popular facial databases. The experiments performed on several facial image databases (BioID [11], ORL/AT&T [3], FERET [8], Face94 [4] and Face95 [5]) showed that face recognition using this type of feature space dimensionality reduction is particularly convenient and efficient, giving high recognition performance.
coefficients and optional entropy coding. Although the compression ratio of presented approach is comparable to other, well-known algorithms, this new method gives images of very high visual quality. Some details on the hardware implementation in a reprogrammable chip are provided.
opcjonalnego kodowania entropijnego. Pomimo tego, że uzyskiwany współczynnik kompresji jest porównywalny do innych znanych algorytmów, opracowana metoda daje obrazy o dużo lepszej jakości wizualnej. Pokazano również szczegóły implementacyjne do układów reprogramowalnych.
prostoty, wykazało się dużą skutecznością, która może być dalej poprawiona poprzez zastosowanie kaskadowego łączenia deskryptorów obrazów (co również zostało opisane w pracy). Przeprowadzone eksperymenty pokazały, że omawiane ekstraktory cech mogą mieć bezpośrednie zastosowanie w biometrycznych systemach identyfikacji osób bazujących w dużej mierze na rozwiązaniach sprzętowych (prostota i wydajność).
effectiveness which may be further increased by joining these simple feature extractors into a parallel structure (also described in the paper). Performed experiments demonstrated that described feature extractors may have straightforward implementation in biometric hardware system (simplicity and efficiency).
accurate recognition. The reduction is realized by modified Linear Discriminant Analysis. In the paper, the authors present its mathematical principles together with some results of practical recognition experiments on popular facial databases (ORL, BioID).
Their main advantage is associated with efficient representation of color variations leading to the simple color-limits definition. In the paper, the authors present the precise mathematical principles together with some practical examples of working algorithm.
data without losing any important part of it requires an adaptive method, which works without any supervision. In this article we discuss a few variants of a two--step approach, which involves Karhunen--Loeve Transform (KLT) and Linear Discriminant Analysis (LDA). The KLT gives a good approximation of the input data, however it requires a large number of eigenvalues. The second step reduces data dimensionality futher using LDA. The efficiency of KLT depends on the quality and quantity of the input data. In the case when only one image in a class is given as input, its features are not stable in comparison with other images in other classes. In this article we present a few methods for solving this problem, which improve on the ideas presented in [6, 9].
obserwatora w przestrzeni i kierunku obserwacji. Analizowana metoda opiera się na poszukiwaniu inwariantów przekształceń geometrycznych i filtracji dopasowanej. Pozwala na dokładne określenie współczynników przekształceń (obrót, przesunięcie, skalowanie), jakimi zostały poddane mapy. Przedstawione zostały eksperymenty dla kilku możliwych zadań praktycznych.
Fourier-Mellin invariant calculation and on the cross-correlation technique. It can be a base for designing an autonomous navigational system.
Ograniczanie wyników