Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Thermo-magnetic stability of magnetic Fe3O4 nanoparticles for hyperthermia
EN
Monodispersed Fe3O4 magnetic particles adsorbed by amylase (such as citric acid (CA), carboxymethyl chitosan (CMCH) and β-cyclodextrin (CD)) were prepared by means of co-precipitation method. The absorption character of the samples was investigated by FT-IR, TG and VSM. It was found that the carboxyl (COOH groups) of amylase reacted with the hydroxyl (OH groups) on the surface of Fe3O4 particles, resulting in the formation of iron carboxylate that was adsorbed onto Fe3O4. The induction heating properties of the magnetic Fe3O4 nanoparticles in an alternating current magnetic field were also investigated and the thermo-magnetic stability in induction heating was discussed.
EN
The structural, electronic and optical properties of BexZn1−xO alloys were studied using the density functional theory and Hubbard-U method. Uo,p = 10.2 eV for O 2p and UZn,d = 1.4 eV for Zn 3d were adopted as the Hubbard U values. For BexZn1−xO alloys, the lattice constants a and c decrease linearly as Be concentration increases, the bandgap increases with a large bowing parameter of 6.95 eV, the formation enthalpies have the maximum value with Be concentration at 0.625, corresponding to the possible Be concentration to form phase separation. These calculations comply well with the experimental and other theoretical results. Furthermore, optical properties, such as dielectric function ∈(ω), reflectivity R(ω), absorption coefficient α(ω), were calculated and discussed for BexZn1−xO alloys with the incident photon energy ranging from 0 eV to 30 eV.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.