Amber-bearing sands from Zdolbuniv mine are Paleogene fine-grained (0.6–0.12 mm) clastic rocks. The material is poorly rounded and moderately sorted out. It mainly consists of quartz, glauconite, and subordinately, feldspars (K-feldspars and plagioclases), mica, carbonates, zircon, epidote, fossil resins (Baltic amber) and ore minerals such as hematite, rutile, anatase, ilmenite. The presence of glauconite in the sands proves that sedimentation basin had to be marine reservoir. The variable composition of individual glauconite grains suggests the environmental conditions had to change during the sedimentation of clastic rocks. The occurrence of minerals, assembly such as zircon, epidote, ilmenite, rutile, anatase in the sands as well as the brown CL color of quartz grains, may suggest that majority of clastic material originated from metamorphic rocks, most probably coming from the Ukrainian Shield. Together with metamorphic material the fragment of fossil resins, i.e. Baltic amber, from the Paleogene off-shore forests could be transported to the sedimentation basin. Nowadays the bottom part of the analyzed profile is the most promising for the recovery of glauconite, whereas the exploration of Baltic amber may be initiated from the top of the profile.
PL
Piaski bursztynonośne z kopalni Zdolbuniv (obwód rowieński, NW Ukraina) to paleogeńskie, drobnoziarniste (0,6–0,12 mm) skały klastyczne. Materiał ziarnisty tych piasków jest słabo obtoczony i średnio wysortowany. Stanowią go głównie kwarc i glaukonit oraz występujące w podrzędnych ilościach: skalenie (K-skalenie i plagioklazy), miki, węglany, cyrkon, epidot, żywice kopalne (bursztyn) i minerały rudne, takie jak: hematyt, rutyl, anataz, ilmenit. Obecność glaukonitu wskazuje na środowisko morskie sedymentacji tego materiału. Duże zróżnicowanie składu chemicznego poszczególnych osobników glaukonitu sugeruje, że w trakcie sedymentacji materiału ziarnowego dochodziło do zmian warunków środowiskowych w samym basenie. Obecność w przedmiotowych piaskach takich minerałów, jak np. cyrkon, epidot, ilmenit, rutyl, anataz, jak i barwy ziaren kwarcu na obrazach CL wskazują, że większość materiału ziarnowego pochodzi ze skał metamorficznych, najprawdopodobniej budujących podłoże Tarczy Ukraińskiej. Wraz ze wspomnianym materiałem do basenu sedymentacyjnego mogły być transportowane fragmenty paleogeńskiej żywicy (bursztynu), pochodzące z pobliskich lasów. Analizowany profil piasków jest w dolnej części wzbogacony w glaukonit, podczas gdy górna jego część jest wzbogacona we fragmenty żywic kopalnych.
Clay shales and mudstones from the Pieprzowe Mts. Shale Formation and their weathering cover were investigated for mineralogy and petrography in order to reconstruct weathering processes that led to crystallization of secondary sulphates. White crusts occurring on Cambrian pyrite-bearing rocks are a product of hypergenic alteration in low pH conditions and Al-rich environment. They are composed of pickeringite [MgAl2(SO4)4*22 H2O] accompanied by alunogen [Al2(SO4)3*17 H2O] and small amounts of epsomite [MgSO4*7H2O].
Hornfelsy pochodzące z wyrobisk dawnej kopalni „Wolność” w Kowarach na Dolnym Śląsku są to skały wchodzące w skład formacji rudonośnej z Podgórza. Struktura ta znajduje się na styku granitoidowego masywu Karkonoszy oraz jego wschodniej osłony metamorficznej. Zmienność składu mineralnego badanych hornfelsów, a także ich cech strukturalno-teksturalnych były podstawą wydzielenia odmian barwnych tych skał, tj. czarnej, szarej i zielonej. Każda z nich występuje niezależnie, bądź też wzajemnie się przeławicają, dając odmiany mieszane o teksturach laminowanych lub smużystych. Na podstawie składu mineralnego stwierdzono, że hornfelsy z Kowar należą do facji piroksenowo-hornfelsowej metamorfizmu kontaktowego, dla której charakterystyczny jest następujący zespół mineralny: pirokseny, plagioklazy i kwarc; muskowit jest zastępowany ortoklazem, a biotyt pozostaje stabilny. Typowym minerałem tej facji jest andaluzyt, choć niekiedy może występować również sillimanit. W skałach tych wyróżniono przynajmniej trzy generacje faz mineralnych: I – allogeniczną, II – metamorficzną i III – hydrotermalną. [...]
EN
Hornfels from the closed “Wolność” mine (Kowary, the Lower Silesia) are recognized as thermally metamorphosed rocks belonging to hornblende-hornfels facies or locally a facies of pyroxene hornfels. Their texture reveal the traces of some deformations such as folding or fractures. Their protholit is described as a pelitic deposit enriched with clay minerals. The sediment was altered into meta-pelities-aleurites after the diagenesis, and later the rock was intensely thermally metamorphosed at the contact with the intrusion of the Karkonosze granitoid. Three varieties are distinguished based on their colour: green, grey and black. Green and black colours result from the predominance of hornblende and biotite over other rock components, respectively. Whereas grey hornfels are composed of similar amounts of both mafic minerals: biotite and hornblende. Quartz, mica minerals (biotite and muscovite), amphibole, (hornblende), acid plagioclase and andalusite, epidote group (clinozoisite), orthoclase and pyroxene make up hornfels components. Locally, andalusite is accompanied by sillimianite, which indicates a higher degree of contact metamorphism alterations. Three generations of minerals are distinguished in the rocks: allogenic (I), metamorphic (II ) and hydrothermal (III ). The allogenic phases are represented by heavy minerals such as zircon, apatite and monazite, which are characteristic of the protholit. The main components of the rocks (e.g. quartz, hornblende, feldspars, andalusite, sillimanite, mica minerals) belong to metamorphic minerals. Chalcopyrite, pyrite and fluorite are surely hydrothermally originated phases. Granitoides found at the contact zone with hornfels indicate traces of metasomatic alteration as a result of endomorphism in this region.
The Pepper Mts. Shale Formation, consisting of: clayey shales, mudstones and sandstones, as one of the oldest unit of the Holy Cross Mts., was subjected to mineralogical and petrographical studies. In order to reconstruct the geological history of the succession, mineral assemblages were characterized from the genetic point of view. Pyrite and goethite taking a form of bacterial-cell pseudomorphoses, crystallized during sedimentation and/or diagenesis, while quartz, kaolinite, goethite and chlorite prove subsequent alteration due to the hydrothermal fluid circulation. Secondary sulphates occurring on the pyrite-bearing rock outcrops mark the way of weathering processes. According to the presented results, Cambrian sediments were affected by hot fluids, which caused mineral recomposition and maturing of organic matter. Under the hypergenic conditions sulphate crust precipitate with pickeringite [MgAl 2 (SO 4 ) 4 ∙ 22H 2 O], as a dominant phase accompanied by alunogen [A l 2 (SO 4 ) 3 ∙ 17H 2 O] and small amount of epsomite [MgSO 4 ∙ 7H 2 O].
Natural fossil resins are products of deciduous and coniferous trees formed at least 40 million years ago. The fact that fossil resins survived until the present day is due to appropriate processes and conditions. One of them is the ability to polymerize. There are types of chemical structures derived from the original plant secretions which formed polymerized or macromolecular connection resistant to various environmental factors (Penney 2010). The polymerization process gives property of better susceptibility to mechanical machining, and thus jeweler’s usefulness (Matuszewska 2015). Fossil resins are being found along the southern coast of the Baltic Sea (from Jutland Peninsula to the Sambia) and ranges stretching trough Germany, Poland, Lithuania, Latvia, Belarus and Ukraine (Czechowski et al. 1996, Heflik & Natkaniec-Nowak 2011). They are also occurring in other locations, for example in Mexico, Domini - can Republic, Colombia and SE Asia (e.g. Myanmar, Indonesia). The most commonly used diagnostic methods for fossil resins are spectroscopic methods (FT-IR, RS) (Kosmowska-Ceranowicz 1999a). They allow identification of different varieties of resins and get to know their internal structure (Czechowski et al. 1996, Kosmowska-Ceranowicz 1999b, Matuszewska 2010, 2015). Quantification possibilities have also other methods, such as X-ray fluorescence, diffractometry, and most of allchemical methods. In recent years, t method for determining the absolute hardness (microhardness) (Matuszewska & Gołąb 2008) was added to these analytical techniques. This parameter clearly shows the relationship between physico-chemical features with different aspects of their genesis. It can be helpful in determining the age of resins (Matuszewska et al. 2002). Hardness as the primary diagnostic feature of many minerals is evaluated relatively to model of 10 minerals in Mohs scale. Reported in the literature (Savkievich 1967, Popkova 1984, Matuszewska 2009), hardnesses of fossil resins are from 1 to 3, which correspond to hardness of talc (1), gypsum (2) and calcite (3). It therefore varies; for succinite (which is treated as a model for fossil resins) range is from 1.5 to 3, while Colombian copal from 1 to 1.5. It depends mainly on the degree of macromolecular structure condensation of these materials. The subjects of the study were samples of fossil resins selected from Mexico (Chiapas), Dominican Republic (Barahona) and Colombia (Velez). In addition, for comparison purposes Baltic succinite were measured. The measurements were done in Gemological Laboratory at WGGiOŚ AGH using a microhardness tester PMT-3 from Russian manufacturer. For the determination of this parameter Vickers method was used, according to which the microhardness determines the ratio of the pressure force of diamond pyramid with load to the lateral surface of the depth print. For measurement, 250 mg load. The test was conducted on the smooth surface of each of 6 samples repeating the measurement 20 times. The obtained results allow concluding clearly that the individual fossil resin samples are significantly different from each other. These differences result from different places of origin and age, thus the conditions of the geological, natural environment, climate, etc. Average value of the microhardness for fossil resins from Mexico and Colombia is the lowest – respectively 18.54 kG/mm 2 and 19.87 kG/mm 2 . In turn, the value of this parameter for the samples from Dominican Republic is significantly higher (yellow resin – 26.59 kG/mm 2 ; orange resin – 27.76 kG/mm 2 ; dark red resin – 26.57 kG/mm 2 ). Succinite achieves the highest values of microhardness in comparison with other resins. This is due to the difference in their ages – Eocene Baltic amber, is the oldest studied resin, therefore condensation processes in the structure are more advanced. Slightly lower values achieve Miocene – Oligocene resins from Dominican Republic. Lower Miocene – upper Oligocene and Pleistocene – Pliocene samples from Mexico and Colombia, have the lowest microhardness. The differences in microhardness of various resins may be explained by the fact that their fossilization underwent in different environmental conditions. The environmental conditions were different in various geographical locations. The degree of condensation and polymerization of the resins and their hardness increased with time. Therefore, in case of the oldest investigated resin, succinite-Baltic amber, the measured microhardeness was the highest.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Pieprzowe Mts., which constitute the eastern part of the Holy Cross Mts. (Central Poland), are considered a large complex of mid-Cambrian strata (Alexandrowicz 1972). In a 2-km long exposure of the Pieprzowe Mts succession, along the Vistula River bank near the town of Sandomierz, shales, quartz-mica shales, quartzites, sandstones, mudstones and conglomerates are outcropping. All shaly facies are enriched in pyrite. The occurrence of secondary minerals in the weathering zone of the mid-Cambrian shale formation in the Pieprzowe Mts. is known for an extended period of time. Differences in color eff lorescence observed on the weathered surface were considered as alum incrustations; hence, the term “alum shale” has been used with reference to these rocks. The phase composition of fine-crystal aggregates was determined by Kuhl (1931). Based on observations under polarizing microscope, he interpreted them as a composition of mirabilite, epsomite and alunogen, thus contradicting his earlier hypothesis about pickeringite occurrence. Pickeringite is a sulphate mineral owing its origin to oxidation of pyrite in low pH conditions (Kruszewski 2013) and is a member of the halotrichite group with theoretical formula MgAl2(SO4)4 ∙∙ 22 H2O. However, chemically pure pickeringite is rare as most of its occurrences form transitional phases between pickeringite and halotrichite (Parafiniuk 1991). This mineral is usually observed in aggregates with other sulphates; the most common association consists of alunogen and epsomite. Crystallization and preservation of pickeringite depend on air humidity, which results from its high solubility in water (Balcerzak et al. 1992, Parafiniuk 1991). The aim of this study is to describe conditions of pickeringite crystallization in the weathering zone of the Pieprzowe Mts. shale formation. SEM-EDS analysis made it possible to detect three types of sulphide minerals occurring within aggregates. The most common is pickeringite forming elongated crystals with smooth surfaces, which demonstrate absence of dissolution processes. Fibers of pickeringite are associated with a mineral of tabular shape named alunogen – Al(SO4)3. Epsomite was detected in subordinate quantities. XRD analysis confirmed the polymineral character of efflorescenes. The main ref lex for pickeringite (ca. 4.80 Å) is fragmented into two peaks: (1) 4.8061 Å and (2) 4.7958 Å. These values are reduced as compared to ICDD data, which could result from admixtures of other sulphates, alunogene and epsomite. Another options is that this reduction means that pickeringite is forming transitional phase into halotrichite, which has its maximum reflex at 4.81 Å. This could be confirmed by chemical composition (Fe impurities). The Pieprzowe Mts. shale formation presents specific conditions favouring evaporation of pickeringite. The elements required for pickeringite crystallization originate from the host rocks. The source of Al3+could be kaolinite, which is common as a product of alteration processes as well as an authigenic compound. Processing of micas transformation causes environmental enrichment in Mg2+. The published sources indicate that the presence of pyrite is a key-factor for pickeringite crystallization. However, this mineral is also typical for shales present in the Carpathian rock units, where as a product of pyrite oxidation jarosite and gypsum are common. This suggests that some other initiator is required for the formation of pickeringite. It has been suggested that surface evaporation of groundwater causes the precipitation of sulphates (Cody & Briggs 1973 vide Parnell & Roderic 1982). The Pieprzowe Mts. shale formation contains dense network of veins so it is possible that waters from deeper layers are able to migrate into the subsurface. Some documented occurrences of pickerigite are related to arid regions. Certainly, an important role is played by humidity – southern exposure and poor plant cover of the Pieprzowe Mts. could be the reason why pickeringite may not only crystalize but also exist there. Most of the pickeringite occurrences in Poland are associated with rocks of old units (mid-Cambrian in age in the Pieprzowe Mts., Proterozoic in Wieściszowice and in Krobica quarry). Older rocks are poor in carbonates so it could mean that pH is a more important factor conditioning pickeringite crystallization than pyrite occurrence. Pickeringite was found also on burning coal-mining dumps in the Upper Silesian Coal Basin (Kruszewski 2013), what confirm that pH determines crystalization of this mineral. Correlation between pickeringite and other sulphates is also interesting. Alunogen associated with pickeringite crystalize when the delivery of Mg2+is reduced. Paragenesis consisting of alunogene, epsomite and pickeringite could be a result of different solubility of these phases or changing of Mg2+and Al3+ions during evaporation processes. The following sequence of crystallization is proposed: alunogene-pickeringite-epsomite.
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Larimar, whose colour is varying from white light-blue, green-blue to deep blue, is only found in the Sierra de Bohoruco mountain range, Barahona Province, the Dominican Republic. It was discovered by a Spanish priest, Miguel Fuertes Lorén, in 1916 (Fuertes Marcuello & Garcia Guinea 1990). On the basis of geological map of this region, larimar is found in a tectonic sheet of Cretaceous-Eocene rocks, mainly basalts, tuffs and tuffites which are associated to an emerged block of oceanic Caribbean crust. The basic host rock is highly serpentinized and has suffered intensive fracturing and shearing (Donnelly et al. 1990). The Dumisseau formation represented by volcanic rocks is over-lain by limestones of the “Neiba formation” of the Lower Eocene-Lower Miocene age. During most of the Eocene, these carbonate rocks coexisted with, or were replaced by, volcanic materials of a tholeitic to alkaline signature (OIT to OIA), grouped under the new denomination of El Aguacate de Neiba Volcano-Sedimentary Complex, interpreted as being associated with plume. In the northern and southern areas of the Sierra de Bohoruco, coral reef limestones were deposited, representing shallow platform environments of the Oligocene-Miocene age (Huerta et al. 2007). Fault contacts are observed between the volcanic and the limestone rocks (Bente et al. 1991). For the first time, larimar was defined as a pectolite rock by the authors of this paper. The reason for this definition is the rock’s macroscopic, heterogeneous character emphasized by finely fibrous, spheroidal aggregates. The heterogeneity is also observed in the mineral composition of the rock. Pectolite, as a major component in these rocks, is a triclinic mineral crystallized usually in veinlets, stringers, and irregular masses in volcanic rocks. Other minerals, such as calcite, natrolite, chalcedony, hematite, chalcocite, crystal formations, and occasionally hematite dendrites, coexist with pectolite and are located along the border fillings (Woodruff & Fritsch 1989). Apatite, sphene, prehnite, danburite and datolite were also found in these heterogeneous masses (Fuertes Marcuello & Garcia Guinea 1990). In addition, Espi & Borrego described in 2008 an organic material associated with pectolite (indentified as volatiles), as a material which was very similar in appearance to bituminouscoal. Due to the heterogeneous character and various mineral compositions, the rock’s colour changes within short distances, and shows other colours-nearly white to light greenish, greenish to greenish blue, and light bluish to blue. The origin of the larimar colour is still not obvious. It has been associated with the presence of copper coming from copper sulphide (Woodruff & Fritsch 1989). Bente et al. (1991) suggested that vanadium was the cause of the colouration and the authors did not exclude the presence of other possible elements like Fe, Ti, Cr, Co, or Ni. Using a thermoluminescence dating, in light blue and blue pectolite were confirmed trace amounts of manganese (Sullasi et al. 2010). Woodruff & Fritsch (1989) are not excluded a manganese as a colouring agent. Espi & Borrego suggested in 2008 that organic matter might have been related to the larimar coloration. The petrographic studies of pectolite samples by Espi & Borrego (2008) with SEM-EDS showed that the veins containing pectolite were associated with a variety of minerals like apatite, calcite, and impure hematite, which, except for iron and oxygen, consisted of aluminium, titanium, calcium, and gold. The chemical composition of the veins, with almost an isometric crystal and compound Mg, Al, Si, Fe, K and Au, suggested the pyroxene group. SEM-EDS analyses of two samples of that rock conducted by the authors showed that impure hematite spreading in that crystalline groundmass can give alike results in polymineral composition, as colour-bearing elements, like Cr and Cu. Small amounts of copper are also found together with the pectolites. Some magnesium ions occurring within pectolite aggregates suggest that this element replaced calcium ions in the pectolite structure. Its source may be found in the surrounding original wall rock, especially in pyroxene group, represented by augite. That latter group is also represented by diopside, which is typical for serpentinization as the replacement of the wall rock. Association of pectolite with a variety of minerals, including e.g. hematite, calcite, natrolite, chalcedony, apatite, chalcocite, and crystallizations in veinlets, stringers, and irregular masses in volcanic rocks suggestes hydrothermal genesis of pectolite. The temperature in which it was formed did not exceed 250°C (Bente et al. 1991) and the process was strongly associated with reduced CO2 concentrations in solutions and low pressure zones (Włodyka et al. 1999).The above conditions were found to occur in many places around the world. The question is why the bluish pectolite crystallized only in one country, the Dominican Republic.
Ewaporaty solno-ilaste – zubry osadziły się w górnym permie wraz z innymi skałami solnymi, w osiowej części wschodnio-europejskiego basenu górnopermskiego i są osadami charakterystycznymi dla polskiej prowincji cechsztynu na obszarze środkowej Polski. Wskutek silnej subsydencji skały te zostały pogrzebane na głębokość kilku kilometrów i tam zostały poddane przeobrażeniom diagenetycznym i/ lub metamorficznym. W wyniku tych procesów powstało wiele nowych, towarzyszących halitowi, minerałów epigenetycznych. W badanych skałach zubrowych, oprócz halitu, stwierdzono minerały ilaste, naniesione do cechsztyńskiego zbiornika sedymentacyjnego z otaczającego lądu. Na podstawie analizy rentgenograficznej najdrobniejszej frakcji osadu nierozpuszczalnego w wodzie, stwierdzono występowanie illitu i chlorytu. Illit może być słabo przeobrażonym minerałem pierwotnym, natomiast chloryt jest produktem wtórnych, postsedymentacyjnych przeobrażeń geochemicznych. Wyraźny refleks od płaszczyzny dhkl = 1,54Å wskazuje, że jest to chloryt trioktaedryczny. Oprócz minerałów ilastych, stwierdzono występowanie kwarcu, anhydrytu, magnezytu i hematytu. Minerały te wykształcone są w formie idiomorficznych lub/i subidiomorficznych kryształów. Ich wielkość waha się od setnych części milimetra do 2 mm. W składzie chemicznym soli ilastej, wydzielonej z warstwy zubru czerwonego, wśród oznaczonych pierwiastków zdecydowanie przeważają sód i chlor (ponad 94% wag.). Pozostałe 6% wag. stanowią: siarczany (SO4 2-), wapń, magnez, glin, potas, żelazo oraz w bardzo małej ilości krzemionka (SiO2) i brom.
EN
Clayey-salt evaporites, called zubers, were deposited in the axial part of the Eastern European Zechstein (Upper Permian) basin . Zubers are the most characteristic rocks for the Polish province of Zechstein on the Polish Lowlands. As a result of strong subsidence, the rocks were buried down to the depth of several kilometers and afterwards subjected to diagenetic and metamorphic transformations. Consequently, many epigenetic minerals have developed in the presence of halite such as: anhydrite, quartz, magnezite and hematite. These minerals were developing mostly in the form of idiomorphic and/or sub-idiomorphic crystals from hundredths parts of millimeter up to 2 mm in size. In addition to halite, the main component found in zuber’s rock was a clay matter, delivered into the Zechstein basin from the surrounding land. Based on the X-ray analysis of the finest water insoluble fractions, two clay minerals were identified: illite and chlorite. Illite could be a poorly transformed primary mineral, while chlorite is a secondary one, produced during post-sedimentation geochemical transformations. A clear reflex dhkl = 1.54Å indicates that it is a trioctaedral chlorite. In addition to clay minerals, the finest fraction also includes quartz, anhydrite, magnezite and hematite. The chemical composition of clay salt, a component of the Red Zuber (Na4t) unit, is strongly dominated by sodium and chlorine among the identified elements (over 94 weight%). The remaining ca. 6 weight% includes: sulfates (SO4 2-), calcium, magnesium, aluminum, potassium, iron and a small amount of silica (SiO2) and bromo.
W profilu ewaporatów cechsztyńskich na Niżu Polskim utwory zubrowe występują w stropowej partii cyklotemu PZ3 (zuber Na3t) i w środkowej partii cyklotemu PZ4 (zuber Na4t) (Czapowski i in. 2008), gdzie w naturalnej, nie zaburzonej sekwencji tworzą kompleks skał iłowo-solnych o łącznej miąższości około 320–400 m (Wagner, 1994). W wysadach solnych, wypiętrzonych w wyniku procesów halokinetycznych z głębokości około 6000 m, miąższość ta jest bardzo zmienna. W wysadzie kłodawskim miąższość skał zubrowych ogniwa zubru brunatnego waha się od 80 do 140 metrów (Charysz, 1973). W profilu otworu badawczego M-34, odwierconego w wysadzie solnym Mogilno, skały zubru brunatnego stwierdzono w dwóch interwałach głębokości: 1063-1100 m oraz 1457- 1468 m (Wachowiak, Pitera, 2013). Są to utwory iłowo-solne o zmiennej proporcji udziału halitu w stosunku do minerałów ilastych. W badanych próbkach zawartość halitu waha się od 78,6% wag. do 88,4% wag. Zawartość części trudno rozpuszczalnych w wodzie zmienia się od 21,4% wag. do 11,6% wag. Nierozpuszczalne w wodzie residuum jest zbudowane z takich minerałów jak: anhydryt, kwarc, magnezyt, dolomit, piryt oraz minerały ilaste (illit, chloryt), które zidentyfikowano na podstawie analizy rentgenograficznej. W składzie chemicznym skał zubru brunatnego dominują jony sodu i chloru, których sumaryczny udział wynosi 79% i 86% wag. Pozostałą masę skały stanowią jony siarczanowe, węglanowe, wapń, magnez, glin, potas, żelazo, krzemionka oraz w minimalnej ilości inne pierwiastki występujące śladowo.
EN
Brown Zuber rocks (Na3t) occur in the upper part of the PZ3 cyclothem, creating nearly 80-140 m complex of claysalt rocks in the normal deposit succession of the Zechstein (PZ) evaporite profile of the Polish Lowlands (Charysz, 1973; Czapowski et al., 2008). In the salt domes formed by the halokinetic processes, the thickness of this complex is variable. Brown Zuber rocks were found in two depth intervals: 1063-1100 m and 1457-1468 m (Wachowiak, Pitera, 2013) in the profile of exploratory borehole M-34, drilled in the Mogilno Salt Dome. Those were clay-salt formations with changeable proportions of halite and clay minerals. Halite is the main rock-forming mineral, and the samples analysis demonstrated that its content ranges from 78,6 to 88,4 wt.%. The proportion of poorly water soluble parts varies from 21,4 to 11,6 wt.%. The insoluble residuum is composed of such minerals as: anhydrite, quartz, magnesite, pyrite, and clay minerals (illite and chlorite), identified on the basis of X-ray analysis. Chemical composition of the Brown Zuber rocks is dominated by sodium (Na) and chlorine (Cl). The total proportion of these elements amounted 79 and 86 wt.% by weight. Sulfate ion (SO42-), calcium, magnesium, aluminum, potassium, iron and silica (SiO2) equal the remaining wt.%. as well as a small amount of bromine was detected.
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The mid-Cambrian rocks exposed in a topographic scarp adjacent to the Vistula River within the Pieprzowe Mts. (Sandomierz Upland, South East Poland) were the subject of preliminary petrological and mineralogical studies. The Pieprzowe Mts. are a unique geological feature because of their unusual pepper-like coloured weathering cover. The Pieprzowe Mts. are a stratotype area for the Pieprzowe Mts. Shale Formation (mid-Cambrian) defined by Orłowski (1975). This formation consists of the following sedimentary and meta-sedimentary rocks: clay shale, quartz-mica schist, quartzite and conglomerate. Despite over 150 years of research on this formation some geological and mineralogical problems are still awaiting explanation (for example the origin of phosphate nodules in conglomerate layers). The scarcity of fossils and complicated tectonic structure of the formation are the reasons why its sequence stratigraphy is especially difficult to detect. Trilobites characteristic for the mid-Cambrian were found only at one locality within the conglomerate layers, and this age was extrapolated to other units of the Pieprzowe Mts. Shale Formation. Michniak (1969) claims that the same age cannot be ascribed to the whole rock succession because of petrographic diversity of the constituting rock types. Kowalczewski (1995) suggests that the age of the formation should be extended from the Early Cambrian to Early Ordovician (Early Tremadocian). Majority of research devoted to the Pieprzowe Mts. strata focused on stratigraphy, sedimentology and tectonic analysis. Petrographic descriptions of those rocks were given by Samsonowicz (1916, vide Orłowski 1964) but mineralogical analyses were done rather sporadically (Kuhl 1931a, b, Michniak 1969). This paper is devoted to the preliminary mineralogical description of quartz-mica schists and quartzites. The analysis involved observations under transmitted light polarizing microscope. In addition, scanning electron microscopy (SEM) equipped with Energy Dispersive Spectroscopy detector (EDS) was used. During preliminary studies of quartz-mica schists, it was found that quartz, which is a dominant component of this rock occur as both, terrigenous grains and authigenic filling of veins. Quartz is also present within the lithic grains of quartzites that are common in the quartz-mica schists. Kaolinite appears in two genetic forms: (1) as a product of mica transformations, and (2) as an authigenic mineral. Accessory mineral assemblage consists of zircon, framboidal pyrite and Ti-oxides. The Fe-oxides result from chemical weathering. In the mineral composition of quartzites angular, xenomorphic, nonundulatory quartz prevails, which is locally impregnated with phosphates. A single grain of apatite was encountered. Very fine veins composed of secondary carbonates occur within the rock. Accessory minerals are represented dominantly by piryte, which does not have the framboidal character typical for sedimentary rocks. In the light of the aforementioned preliminary results, it is inferred that these rocks were subjected to strong diagenesis and bear traces of hydrothermal processes. Presence of apatite in quartzites sheds a new light on the problem of the origin of phosphate nodules within the conglomerates. According to the present study, the authors suggests that the quartzites may be older than the quartz-mica schists, based on the presence of quartzite lithic grains within them. This paper informs about the research project aiming to characterize the weathering products occurring within the Pieprzowe Mts. It can be observed that a lot of secondary minerals is present here such as: kaolinite, alunite (Kuhl 1931a, b), Fe and Mn-oxides. It seems that weathering processes and theirs products are still not sufficiently explained. There is a hypothesis that jarosite could also form here. Further research will be carried out using various analytical techniques to improve our understanding of these processes.
Rodingites from Nasławice of the Jordanów-Gogołów serpentinite massif in SW Poland are mainly made of augite/diopside, grossular and hornblende/tremolite. The accessory components are represented by vesuvianite, adularia, basaltic hornblende and picotite. Apatite, millerite?, sphalerite, galena, Fe-sulphides, Ni-sulphides and Ni-arsenates were also observed as a trace phases in these rocks. Generally rodingites from Nasławice are enriched in numerous polymetallic compounds of Cu, Ag, Fe, Ni, Co, Fe, Pb, Zn, As and Bi and show similar mineral association and texture as rodingites from the other occurrences in SW Poland, i.e. from Szklary and Braszowice-Brzeźnica massives. They were the most probably developed from mafic protholit (diabase gabbro) intruding into serpentinized ultramafic rocks under metasomatism conditions. The secondary pneumo-hydrothermal post-granitic activities also affected the final formation of these metasomatic rocks.
12
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Przedstawiono wyniki wstępnych prac terenowych i badań mineralogiczno-petrograficznych skał z wybranych rejonów pienińskiego pasa skałkowego po stronie polskiej i słowackiej. Ich celem było rozpoznanie objawów procesów hydrotermalnych i wytypowanie obszarów potencjalnie najkorzystniejszych z punktu widzenia możliwości dalszych badań pienińskiego pasa skałkowego pod kątem rozpoznania termicznego i geotermalnego. Badania laboratoryjne dotyczyły przede wszystkim charakteru mineralnego oraz częstości występowania różnego rodzaju żyłek (głównie węglanowych) tnących skały z najbliższego otoczenia neogeńskich wulkanitów PPS. Stwierdzono, że skały z rejonu potoku Piekiełko koło Krościenka charakteryzuje największa ilość żyłek, zarówno pod względem liczebności jak i miąższości. Są to w przewadze skały okruchowe (piaskowce) odznaczające się dość znaczną szczelinowatością. Wskazano na potrzebę przeprowadzenia dalszych badań geologicznych i wiertniczych.
EN
The results of preliminary field works as well as mineralogical and petrographical investigations of rock samples from selected localities in the Pieniny Klippen Belt (Polish and Slovakian sides) are presented. They aimed at recognition of hydrothermal processes and indicating the most prospective areas for further thermal and geothermal exploration. The laboratory research concentrated mostly on mineralogical composition and frequencies of occurrence of various types of veins (mostly carbonate) which intersect the rocks from the nearest proximity of the Neogene volcanites of the Pieniny Klippen Belt. It was found that the highest number of veins (regarding their abundancies and thicknesses) is ascribed to the rocks outcropping in the area of Piekiełko brook near Krościenko. There are mainly detritic rocks (sandstones) with relatively high amount of fractures. The need for further geological research and drilling works was pointed out.
The aim of the study was mineralogical-gemological and microthermometric analysis of color types of spodumenes (green spodumenes, kunzite) from the Nilaw mine (Laghman Province, Afghanistan). These minerals contain numerous fluid inclusions, both primary and secondary, as well as mineral ones. The analyses of fluid inclusion assemblages (FIA) in green spodumenes showed of temperatures of homogenization (into vapor phase) of carbon dioxide (ThCO2) varing from 27.1 to 27.8°C and total homogenization temperatures (ThTOT) of 252–271°C. Temperature of crystallization after correction varies from 370 to 430°C and pressure - from 1.16 to 1.44 kbar. Composition of brines (in mol%): H2O = 0.93–0.94, CO2 = 0.027–0.038, NaCl = 0.029-0.032, with salinities from 4.33 to 6.59 wt.% NaCl eq. was also calculated. For FIAs in kunzite, temperatures of homogenization of carbon dioxide (ThCO2) range from 27.0 to27.3°C, whereas total temperatures of homogenization (ThTOT) is 238–250°C. Values of Tcr are 300–334°C and Pcr - 0.81–1.12 kbar. Composition of brines (in mol%) is: H2O = 0.57–0.75, CO2 = 0.22–0.40, NaCl ca 0.02; and salinity 4.5–5.7 wt. % NaCl eq. The obtained results show that the studied minerals precipitated from medium-temperature and low-pressure hydrothermal solutions varying in chemical composition. New Polish terminology for English equivalents regarding petrography of fluid inclusions was also proposed.
Field and as mineralogical and petrographical examinations of sedimentary rocks present in the area surrounding the Pieniny Klippen Belt were performed. The aim of these investigations was to identify the symptoms of hydrothermal processes within the studied rocks. Moreover, the areas prospective for the occur- rences of geothermal waters, alternative source of thermal energy instead of traditional power production using fossil fuels, were indicated. Analytical investigations were focused mainly on mineralogical composition of rocks as well as on the frequency of occurrences of various veins (mainly built of carbonate minerals) intersecting the rocks from the neighbourhood of Neogene andesitic rocks from the Pieniny Klippen Belt. The highest quantity and thickness of the veins was observed in the rocks from the area of Piekiełko stream near Krościenko. The clastic rocks (sandstones) from this area contain many fractures which are crucial for potential geothermal water circulation.
15
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Idiomorphic galena crystals occurring within Triassic dolomites from the Bolesław mine near Olkusz were the subject of the study. The samples were collected from vein-pocket-like aggregates of galena, where two stages of mineralization were distinguished. Polished samples were etched with HCl (1:3). Etching revealed the growth zones of PbS crystals. Subsequently, decrepitation, chemical and X-ray analyses were applied. Two decrepitation effects, recorded at the maximum at 150-180°C and 250-300°C, are related to decrepitation of the two inclusion types. The chemical composition and unit cell size vary within the individual growth zones of the crystals. It can be concluded that during growth of the galena crystals the physico-chemical conditions were not stable.
Opisano efekty mineralizacji fragmentów mioceńskich drzew występujących w utworach zapadliska przedkarpackiego, wśród których dominują przedstawiciele drzew iglastych.
EN
The mineralized wood fragments from the Miocene deposits of the Carpathian Foredeep are described, which are dominated by conifer ones.
17
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The study presents results of research on basic extrusive rocks basaltoid from Rębiszów as well as xenoliths existing in these rocks. These xenoliths and the basaltoids were subjected to macro- and microscopic observations, as well as X-ray, chemical and differential thermal analyses. Xenoliths of various sizes, are thermally metamorphosed rock fragments, mainly of Izera granite-gneisses. Some of them are strongly altered. Products of their changes are: ß-tridymite, ß-cristobalite, goethite, lepidocrocite and others. Main component of that mineral mass is tridymite. The SiO2 polymorphic phases originated from reaction in high temperature, caused by basic magma (basaltic one), together with hydrothermal solutions and metasomatic processes on the detached xenoliths of the Izera granite-gneisses.
18
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Praca przedstawia charakterystykę mineralogiczno-petrograficzną bazaltoidów z Rębiszowa oraz naskorupień, powszechnie występujących na powierzchniach bloków oraz w pustkach i szczelinach spękań tych skał. W tym celu wykonano obserwacje makro- i mikroskopowe, analizę rentgenowską, termiczno-różnicową i spektroskopową w podczerwieni. W wyniku przeprowadzonych badań stwierdzono, że bazaltoidy te należą do odmian piroksenowo (augitowo)-nefelinowych lub augitowo-oliwinowo-nefelinowych. Naskorupienia zbudowane są głównie z minerałów grupy zeolitów. W składzie mineralnym tych skupień dominują: natrolit i phillipsyt, obok thomsonitu, skolecytu, mezolitu, chabasytu. Towarzyszą im nieznaczne ilości minerałów ilastych (przypuszczalnie z grupy smektytu i hydromik) oraz geothyt. Ten ostatni nadaje skupieniom lekko żółtawe lub brunatne zabarwienie. Naskorupienia te są wynikiem oddziaływania roztworów hydrotermalnych, ubogich w SiO2, penetrujących skały bazaltoidowe siecią spękań i szczelin.
EN
The study presents mineralogical and petrographical characteristics of basaltoids from Rębiszów quarry and products formed during post-magmatic processes. The rocks were subjected to macroscopic and microscopic observations as well as X-ray, DTA and IR spectroscopy analyses. The basaltoids are as pyroxene (augite)-nepheline or augite-olivine-nepheline rocks. The crust covers, composed mainly of zeolite group minerals, occur abundantly on blocks and beds olanes as well as in cracks and joints within the Rębiszów basalts. Incrustations are mainly built of natrolite and phillipsite with thomsonite, scolecite, mesolite, chabasite. Clay minerals (presumably smectites and hydromicas) and goethite appear as subordinate mineral components. These crust covers were formed during crystallization from low-temperature SiO2-poor postmagmatic fluids penetrating the cracks.
19
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Przedmiotem opracowania są enklawy obecne w menzodiorycie kwarcowym z Przedborowej k. Niemczy. Są one reprezentowane przez odmiany o barwie ciemnej i jasnej. Odmiana ciemna wykazuje strukturę drobno- lub średniokrystaliczną, hipautomorficzną, teksturę bezwładną. Jej treść mineralną stanowią: amfibole (i/lub pirokseny), biotyt, plagioklazy oraz K-skalenie i kwarc. Enklawy te to typowe autolity. Stanowią one prawdopodobnie produkt frakcyjnej krystalizacji magmy o charakterze zasadowym lub też produkt krystalizacji tej samej magmy, która zmieniła swój chemizm (tym samym skład mineralny) w wyniku procesu asymilacji skał z otoczenia intruzji. Enklawy o barwie jasnej mają strukturę drobnokrystaliczną, miejscami poikilitową, teksturę bezładną. Zbudowane są głównie z wollastonitu, plagioklazów, K-skaleni i kwarcu, podrzędnie piroksenu (augitu) i nieznacznej domieszki hornblendy aktynolitowej. Ze względu na odmienny skład mineralny w stosunku do skały macierzystej to typowe ksenolity. Powstały przypuszczalnie wskutek zasymilowania przez magmę jakiejś skały węglanowej (wapienia lub margla) i jej metasomatycznego przeobrażenia w produkt zasobny w ww. składniki mineralne.
EN
The research is focused on two enclaves varieties from quartz monzodiorite from Przedborowa near Niemcza. The dark variety, exhibiting crystalline, hypidiomorphic and random texture, is mainly composed of amphiboles (and/or pyroxenes), biotite, plagioclases, alkaline feldspars and quartz. These enclaves, as typical autoliths, were presumable formed during fractional crystallization of maphic magma or they are products of these magma which due to assimilation process of surrounding rock changed its chemistry and mineral composition as a result. The light enclaves are fine-grained rock with random, sometimes poikilitic texture. Their major components include wollastonite, plagioclases. K-feldspar, quartz; within subordinate minerals appear pyroxene (augite) and actinolite hornblende. These xenoliths were presumably formed as a result of carbonate rock assimilation by magma. Subsequent metasomatic process was consequently responsible for crystallization of the product.
Sole niebieskie, a w szczególności ich geneza i charakter czynników barwiących, to jedna z frapujących zagadek współczesnej nauki. Od prawie 150 lat temat ten zajmuje badaczy różnych dziedzin nauki, ale mimo nowych danych, na wiele pytań brak odpowiedzi. Praca ta rozpoczyna cykl artykułów poświęconych solom niebieskim z Kłodawy. Już wstępne wyniki badań chemicznych pozwalają sądzić, że są to sole epigenetyczne, których powstanie nierozerwalnie łączy się z różnorodnymi czynnikami wywołanymi halotektoniką tego wysadu.
EN
Blue-coloured salt minerals, and particularly their genesis and the nature of their colouration, are one of the fascinating puzzles of modern science. The problem has been dealt with for almost 150 years by scientists of diversified specializations but, despite new information gathered, many questions remain open. The paper begins a series of presentations devoted to the blue salt minerals from K³odawa Permian deposits. Even preliminary results of chemical analyses allow to conclude that the salts in question are of secondary origin and their genesis is closely related to various factors associated with halotectonics of the Kłodawa salt dome. There is a correlation of colour intensity with crystal size (larger halite crystals tend to be darker) and adjacent potassium salt deposits (sylvinite).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.