Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Metoda określenia emisyjności niektórych materiałów budowlanych
PL
W artykule przedstawiono analizę dostępnych metodologii, służących do określenia emisyjności powierzchni materiałów w warunkach eksploatacyjnych i laboratoryjnych. Odnosząc się do nich krytycznie, zaproponowano prostą metodę określenia emisyjności niektórych materiałów budowlanych oraz przedstawiono algorytm określenia emisyjności termicznej wybranego materiału. Metoda polega na opracowaniu modelu konwekcyjnej i radiacyjnej wymiany ciepła, zachodzącej miedzy cylindrycznym źródłem ciepła a zamkniętą przestrzenią skrzynki badawczej (modelu pomieszczenia). W modelu o kształcie sześciościanu o wymiarach 1×1×1m, umieszczono wewnątrz źródło ciepła o znanym polu powierzchni i emisyjności. Do pomiaru temperatury i gęstości strumienia ciepła użyto termopar i czujników gęstości strumienia ciepła. Materiał budowlany o badanej zdolności emisyjnej (w tym wypadku wyprawę tynkarską) naniesiono na ścianki modelu pomieszczenia od wewnątrz. Na podstawie danych pomiarowych określono całkowity strumień ciepła, dopływający do ścianek modelu pomieszczenia od źródła ciepła oraz temperaturę poszczególnych powierzchni, źródła ciepła i powietrza wewnątrz skrzynki badawczej. Wartości temperatur pozwoliły określić konwekcyjny strumień ciepła na powierzchni ścianek modelu pomieszczenia i źródła ciepła. Radiacyjny strumień ciepła określono jako różnicę miedzy całkowitym i konwekcyjnym strumieniem ciepła. Wartość radiacyjnej składowej z kolei dała możliwość określenia zdolności emisyjnej badanego materiału, którym pokryto powierzchnię ścianek. Na podstawie wyprowadzonych zależności i przeprowadzonych pomiarów ostatecznie określono współczynnik emisyjność wewnętrznej wyprawy tynkarskiej o małej gęstości z dodatkiem aerogelu.
EN
The article presents an analysis of existing methodologies and apparatus for determination of materials emissivity under production and laboratory conditions. Their disadvantages were defined and a more simple method for the determination of the emissivity of some types of building materials was proposed. An algorithm of the emissivity determination of the chosen material was also presented. The article presents a method for determining emissivity of some types of building materials. The proposed method consists in developing of a model of convective and radiative heat transfer taking place between the cylindrical heat source and a square shell (model of the room). The model of the room is the cube of dimensions 1×1×1 m, with the heat source arranged inside of it. The surface area and emissivity of the heat source are known. For temperature and heat flux measurement thermocouples and heat flux sensors were used. The building material with tested emissivity (e.g. plaster) is applied on the inner wall surface of the room model. Experimental measurement gives us the total heat flux, flowing to the walls of the room model from the heat source, the temperature of the walls surface in the room model and air temperature inside of it. Description of the method is illustrated by an example of emissivity determination for interior plaster with an extremely low-density which is kind of rigid foam with aerogel.
EN
This paper presents the developed mathematical models of the steady state heat transfer processes in the convectional elements of passive solar heating systems as well as the numerical results of these processes’ simulation. The influence of the adjustable radiant barrier installation on the solar heat gain through the convectional elements of a building’s solar passive heating system has also been analyzed.
3
Content available remote Procesy wymiany ciepła w konstrukcjach z fasadami wentylowanymi w okresie letnim
PL
W artykule wykonano analizę procesów wymiany ciepła i zaprezentowano model matematyczny wymiany ciepła w obudowach budynku z wentylowaną fasadą w okresie letnim. W modelu uwzględniono braki jakie występują w istniejących metodykach obliczeniowych. Zaproponowany model matematyczny daje możliwość przeanalizowania wpływu takich czynników, jak korelacja konwekcyjnych i promieniowych strumieni ciepła oraz emisyjność powierzchni warstwy powietrznej, na procesy wymiany ciepła w obudowie z wentylowaną warstwą powietrzną. Za pomocą przedstawionego modelu matematycznego można analizować propozycje poprawy cech konstrukcyjnych fasad wentylowanych dla zmniejszenia napływu ciepła do pomieszczeń w okresie letnim.
EN
This article is about the analysis of heat transfer processes and development of the mathematical model of these processes in building envelope with ventilated facade for the summer period. A mathematical model was developed considering the main limitations of existing methods of heat engineering calculations. Offered mathematical model makes it possible to analyze the impact of such factors as the ratio of convective and radiative heat fluxes and emissivity of the air gap surfaces on the processes of heat transfer in the structure with ventilated layer. Using this mathematical model, recommendations for reducing the income of heat from the sun into the room for the summer period can be provided.
4
Content available remote Projektowanie fasad wentylowanych ze zredukowanymi stratami ciepła
PL
Artykuł poświęcony jest obliczeniom parametrów wymiany ciepła w powietrznej warstwie fasad wentylowanych proponowanymi modelami matematycznymi. Etapami rozpatrzono proces rozwiązania zadania metodą numeryczno-analityczną za pomocą programem Mathcad. Wykonano także analizę porównawczą obliczeń z wynikami otrzymanymi metodą różnic skończonych. Zaproponowano również sposób na zmniejszenie strat ciepła przez obudowę budynku z wentylowaną warstwą powietrzną.
EN
The paper covers solution of the problem of heat-engineering calculation of air gap in ventilated facade by using analytically numerical method with the help of engineering calculations software (Mathcad for instance). Also, the comparative analyses of the results obtained by analytically numerical method, with the results obtained by the finite difference method have been made. Recommendations to reduce heat loss were made.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.