Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The hereby article presents the results of an R&D project implemented by the company Terramap. The result of the project is a measuring device for 3D digitization, enabling data acquisition and processing. A characteristic feature of the system is automatic acquisition of information on both object geometry (spatial digitization), as well as color information in the RGB color space on this object (high resolution digital photos). Software dedicated for the device allows for planning and controlling the data acquisition process and their processing, as well as development of the materials ready for presentation. Implementation of the results of the conducted tests by means of constructing a device on their basis with accompanying software enabled significant acceleration of the digitization works, and consequently reduction of unit costs of 3D digitization. In order to assess the geometric quality of the 3D models obtained automatically by the device reference measurements were performed for the selected objects. Such measurements were carried out using two methods: first the geometry of the tests objects was measured by means of a handheld 3D scanner Artec Eva, second a direct manual measurement of the characteristic dimensions of the test objects was performed using a caliper. The 3D models obtained from the RevoScan device and 3D scanner Artec Eva were fitted into each other, and then compared using tools available in the Geomagic Qualify software in modules Alignment and Analysis. Whereas the results of the manual measurements of the characteristic dimensions of the test objects were compared with the results of measurements of the same features carried out on the 3D models obtained from the RevoScan device. The obtained results represented in the form of tables and graphs. The performed tests confirm achieving the model accuracy better than 0.3 mm assumed in the project.
PL
W artykule zaprezentowano wyniki projektu badawczego zrealizowanego przez firmę Terramap, którego efektem jest urządzenie pomiarowe do digitalizacji 3D, umożliwiające pozyskiwanie i przetwarzanie danych. Cechą charakterystyczną systemu jest automatyczne pozyskiwanie informacji zarówno o geometrii obiektu (digitalizacja przestrzenna) jak i informacji barwnej w przestrzeni RGB o tym obiekcie (wysokorozdzielcze zdjęcia cyfrowe). Dedykowane oprogramowanie dla urządzenia pozwala na planowanie i sterowanie procesem pozyskania danych, ich przetwarzanie oraz opracowanie materiału gotowego do prezentacji. Wdrożenie wyników przeprowadzonych badań przez skonstruowanie na ich podstawie urządzenia wraz z towarzyszącym oprogramowaniem pozwoliło na znaczne przyspieszenie prac digitalizacyjnych, a co za tym idzie obniżenie jednostkowych kosztów digitalizacji 3D. W celu oceny jakości geometrycznej uzyskanych automatycznie przez urządzenie modeli 3D wykonano, dla wybranych obiektów pomiary referencyjne. Pomiary zostały zrealizowane na dwa sposoby: po pierwsze wykonano pomiar geometrii obiektów testowych za pomocą ręcznego skanera 3D Artec Eva, po drugie wykonano bezpośredni manualny pomiar wymiarów charakterystycznych obiektów testowych z wykorzystaniem suwmiarki. Uzyskane modele 3D z urządzenia RevoScan i skanera 3D Artec Eva wpasowano w siebie, a następnie porównano za pomocą narzędzi oprogramowania Geomagic Qualify – moduły Alignment i Analysis. Wyniki manualnych pomiarów wymiarów charakterystycznych obiektów porównano z wynikami pomiarów tych samych cech zrealizowanymi na uzyskanych modelach 3D z urządzenia RevoScan. Uzyskane wyniki przedstawiono w formie tabel i wykresów. Wykonane badania potwierdzają osiągnięcie dokładności modelu lepszej niż 0,3 mm założonej w projekcie.
EN
This article presents the results of a research project carried out by the Terramap Sp. z o.o. company, which resulted in the development of a measuring device to digitize in 3D, allowing data acquisition and processing. A characteristic feature of the devised system is the automatic acquisition of information about both the geometry (spatial digitization) of the object and the colour information on the object within the RGB colour space (high-resolution digital photographs). The dedicated software, designed for the device makes it possible to plan and control the process of data acquisition, followed by data processing, and the development of the material ready for presentation. Implementation of the research results, by constructing the device and its software on the basis thereof, allowed us to significantly accelerate the digitization work, and thus reduce the unit cost of 3D digitalization. In order to properly manage colour in the processing of data obtained using the device, we have applied a procedure to calibrate the colour of the material obtained. Studies and tests that we have conducted have shown the validity of the measures designed to control the colour of the resulting product. This publication presents the procedure used for colour management, applied in the process of creating a photorealistic 3D model, as well as the results of our research into automating the process.
PL
Niniejszy artykuł prezentuje wyniki projektu badawczego zrealizowanego przez firmę Terramap Sp. z o.o. którego efektem jest urządzenie pomiarowe do digitalizacji 3D, umożliwiające pozyskiwanie i przetwarzanie danych. Cechą charakterystyczną systemu jest automatyczne pozyskiwanie informacji zarówno o geometrii obiektu (digitalizacja przestrzenna) jak i informacji barwnej w przestrzeni RGB o tym obiekcie (wysokorozdzielcze zdjęcia cyfrowe). Dedykowane oprogramowanie dla urządzenia pozwala na planowanie i sterowanie procesem pozyskania danych, ich przetwarzanie oraz opracowanie materiału gotowego do prezentacji. Wdrożenie wyników przeprowadzonych badań poprzez skonstruowanie na ich podstawie urządzenia wraz z towarzyszącym oprogramowaniem pozwoliło na znaczne przyspieszenie prac digitalizacyjnych, a co za tym idzie obniżenie jednostkowych kosztów digitalizacji 3D. W celu prawidłowego zarządzania barwą w trakcie przetwarzania danych pozyskanych za pomocą urządzenia, zastosowano procedurę pozwalającą na kalibrację barwną pozyskiwanego materiału. Przeprowadzone badania i testy wykazały zasadność działań pozwalających na kontrolę przestrzeni barwnej otrzymywanego produktu. Publikacja niniejsza prezentuje wykorzystywaną procedurę zarządzania barwą stosowaną w procesie tworzenia fotorealistycznego modelu 3D, jak również wyniki badań nad automatyzacją tego procesu.
PL
Publikacja omawia nowatorskie metody rozwiązania ważnego technologicznie zagadnienia, jakim jest klasyfikacji punktów overlap, czyli punktów w pasie podwójnego pokrycia pomiędzy sąsiednimi szeregami skanowania. Prezentowane podejście oparte jest na wydajnej metodzie obliczeń równoległych na procesorach graficznych GPU, pozwalającej na zastosowanie bardziej zaawansowanego algorytmu podczas analizy i przetwarzania danych. Celem sprawdzenia wydajności przeprowadzono testy badanego narzędzia do klasyfikacji punktów overlap, a wyniki odniesiono do możliwości powszechnie stosowanego programu Terrascan firmy Terrasolid. Proponowane innowacje obliczeniowe mają na celu poprawę jakości danych skaningowych pozyskiwanych przy pomocy latających platform takich jak lekkie samoloty czy wiatrakowce. Podniesienie jakości procesu klasyfikacji punktów typu overlap, wymaga dwóch wstępnych etapów przetwarzania. Pierwszy polega na obcięciu brzegów szeregu ściśle według zadanego kąta od pionu. Zastosowane podejście daje bardziej regularne wyniki niż inne metody. Z kolei drugi, oparty o algorytm rozgęszczenia punktów, prowadzi do usuwania nadmiarowych profili skanowania. Proponowane rozwiązanie to klasyfikacja punktów overlap według kąta padania promienia skanera na teren i obiekty terenowe. Reasumując, w ramach opisanych badań dotychczas stosowane metody klasyfikacji punktów overlap zostały poddane rewizji. Korzystając z praktycznych uwag oraz sugestii ze strony wykonawców, wprowadzono szereg udoskonaleń, których prezentacja i dyskusja jest przedmiotem niniejszej publikacji.
EN
The paper presents innovative methods of solving important technological problem: the classification of LiDAR points located in the overlapping area between two parallel scan strips. The presented approach is based on an efficient method of parallel computation using graphic processors, allowing to apply more sophisticated algorithms for data analysis and processing. The tests of the algorithms were executed in order to verify correctness of the assumption that the innovative solutions presented in the paper might increase the efficiency and correctness of the data, referred to well known and popular technological solutions. The suggested computational innovations are applied to increase the quality of the LiDAR data acquired by light airplanes and gyrocopters. Two approaches to increase the quality of classification of overlapping points have bee, proposed. The first process is cutting-off the points of the strip borders strictly according to defined angle measured from vertical direction. The second process is dissolving of the points to get the regular density of the result point cloud. The title issue is the classification of overlapping points according to the angle of incidence to the terrain and other objects. The normal vectors calculation for each of the scan points is necessary for the analysis. Such solution increases the quality of overlaps classification and guarantees its high efficiency thanks to the parallel computation. In conclusion, during the research three innovative approaches were tested and reviewed against commonly used methods. Parallel computation can improve quality and reduce time of processing for overlap classification problem was confirmed.
EN
The paper presents the experiments on the ultralight, stabilized mapping system designed for the gyrocopters (autogyros). It attempts to answer the following question: in what extent the applied stabilization solution (based on the Stewart platform) improves the quality of acquired LiDAR and photogrammetric data? The number of simulations resulting in measures of the influence of the stabilization on the point cloud density, point pattern and image overlaps has been carried out. As the input data the angular parameters of the trajectories recorded within the first test flight were utilized. Using the data, the artificial points clouds were generated. The clouds ware free of the geometric disturbances caused by such a factors as height differences of the terrain and instable flight speed. The only disturbances observed were to be caused by angular deflections that were not stabilized. Obtained results confirm that the stabilization system helps to keep the planned cloud density and overlaps of the images. However the disturbances in point pattern are caused mainly by vibrations and cannot by properly suppressed by the stabilization system. In the summary the ways of further system improvements were suggested.
PL
Artykuł jest efektem prac nad ultralekką stabilizowaną platformą pomiarową dla wiatrakowców. Podjęto w nim próbę odpowiedzi na pytanie: w jakim stopniu opracowany system stabilizacji wpływa na poprawę parametrów geometrycznych danych LiDAR oraz danych fotogrametrycznych? W tym celu wykonano szereg symulacji obrazujących wpływ stabilizacji na zachowanie planowanej gęstości chmury punków, jej jednorodność a także wpływ na pokrycie zdjęć. Jako dane wejściowe wykorzystano kątowe parametry trajektorii rejestrowane podczas pierwszych lotów testowych. Dane te pozwoliły na generowanie w sposób „sztuczny” chmur punktów, których geometria jest wolna od zakłóceń wywołanych przez inne czynniki (np. niestabilna prędkość lotu), i zniekształcona jedynie z powodu niekompensowanych wychyleń kątowych. Uzyskane wyniki potwierdzają wyraźny, i korzystny wpływ stabilizacji na zachowanie wymaganej gęstości chmury punktów a w szczególności na zachowanie pokrycia zdjęć. Zakłócenia równomierności struktury punktów są natomiast powodowane głównie drganiami i kompensowane przez system stabilizacji tylko w niewielkim stopniu. W podsumowaniu zawarto między innymi propozycje dalszych prac badawczych zmierzających do udoskonalenia systemu pomiarowego.
EN
The paper presents an innovative data classification approach based on parallel computing performed on a GPGPU (General-Purpose Graphics Processing Unit). The results shown in this paper were obtained in the course of a European Commission-funded project: “Research on large-scale storage, sharing and processing of spatial laser data”, which concentrated on LIDAR data storage and sharing via databases and the application of parallel computing using nVidia CUDA technology. The paper describes the general requirements of nVidia CUDA technology application in massive LiDAR data processing. The studied point cloud data structure fulfills these requirements in most potential cases. A unique organization of the processing procedure is necessary. An innovative approach based on rapid parallel computing and analysis of each point’s normal vector to examine point cloud geometry within a classification process is described in this paper. The presented algorithm called LiMON classifies points into basic classes defined in LAS format: ground, buildings, vegetation, low points. The specific stages of the classification process are presented. The efficiency and correctness of LiMON were compared with popular program called Terrascan. The correctness of the results was tested in quantitive and qualitative ways. The test of quality was executed on specific objects, that are usually difficult for classification algorithms. The quantitive test used various environment types: forest, agricultural area, village, town. Reference clouds were obtained via two different methods: (1) automatic classification using Terrascan, (2) manually corrected clouds classified by Terrascan. The following coefficients for quantitive testing of classification correctness were calculated: Type 1 Error, Type 2 Error, Kappa, Total Error. The results shown in the paper present the use of parallel computing on a GPGPU as an attractive route for point cloud data processing.
PL
Od kilku lat obserwuje się dynamiczny rozwój dziedziny usług związanych z digitalizacją obiektów różnych rozmiarów zarówno dla celów muzealnych, jak i gier komputerowych, filmu, reklamy itp. Digitalizacja obiektów 3D to stosunkowo nowa dziedzina usług, której rozwój rozpoczął się przed kilkoma laty wraz z pojawieniem się skanerów laserowych, upowszechnieniem fotografi i cyfrowej i wzrostem możliwości programów graficznych oraz sprzętu komputerowego. Obecnie proces digitalizacji odbywa się z wykorzystaniem wielu „podprocesów” z różnych dziedzin, począwszy od skanowania naziemnymi skanerami laserowymi wykorzystywanymi w przemyśle i geodezji, manualnego pozyskania wysokorozdzielczych zdjęć cyfrowych, poprzez pracochłonną obróbkę pozyskanych danych (zdjęć i chmur punktów), optymalizację uzyskanych danych i integrację danych obrazowych z danymi geometrycznymi, aż po ostateczną wizualizację obiektu i jego publikację. Wiąże się to z koniecznością wykorzystania wielu urządzeń i programów komputerowych oraz wielokrotnym eksportem i importem danych do i z różnych środowisk programowych. Jest to proces skomplikowany, wymagający wiedzy z wielu dziedzin, dostępu do różnorodnych urządzeń i oprogramowania komputerowego, a przede wszystkim pracochłonny i kosztowny. Niniejszy artykuł prezentuje wyniki projektu badawczego zrealizowanego przez firmę Terramap sp. z o.o., którego efektem jest urządzenie pomiarowe do digitalizacji 3D, umożliwiające pozyskiwanie i przetwarzanie danych. Cechą charakterystyczną systemu jest automatyczne pozyskiwanie informacji zarówno o geometrii obiektu (digitalizacja przestrzenna), jak i informacji barwnej w przestrzeni RGB o tym obiekcie (wysokorozdzielcze zdjęcia cyfrowe). Oprogramowanie urządzenia pozwala na planowanie i sterowanie procesem pozyskania danych, ich przetwarzanie oraz opracowanie materiału gotowego do prezentacji. Wdrożenie wyników przeprowadzonych badań skutkujące skonstruowaniem na ich podstawie urządzenia wraz z oprogramowaniem pozwoliło na znaczne obniżenie jednostkowych kosztów digitalizacji 3D.
EN
For several years there has been a dynamic development of services in the areas related to the digitisation of objects of different sizes both for museums as well as computer games, films, advertising etc. Digitisation of 3D objects is a relatively new area of services, the development of which began several years ago with the advent of laser scanners, the dissemination of digital photography and the increased capabilities of graphics software and hardware. At present the digitisation process is performed through the use of multiple sub-processes from various fields. It starts from scanning with the use of terrestrial laser scanners, manual acquisition of high resolution digital photos, through the time-consuming processing of acquired data (images and point clouds) and optimising the obtained data, ending with the integration of imaging and geometric data until the final visualisation of the object and its publication. This involves the need to use multiple devices and computer programs, with repeated export and import of data to and from a variety of programing environments. It is a complicated process that requires expertise in many areas, access to a variety of hardware and software, and above all it is both time-consuming and expensive. This article presents the results of a research project carried out by the company Terramap. The result of this project is a measuring device for 3D digitisation, allowing data acquisition and processing. A characteristic feature of the system is the automatic acquisition of information about both object geometry (spatial digitisation) and the colour information in the RGB colour space (high resolution digital photos). Dedicated software for the device allows for scheduling and controlling the process of data acquisition, processing and development of materials ready for presentation. Implementation of the project results from building the device with dedicated software that allows for a signifi cant reduction in the unit cost of 3D digitisation.
EN
The first part of the paper includes a description of the rules used to generate the algorithm needed for the purpose of parallel computing and also discusses the origins of the idea of research on the use of graphics processors in large scale processing of laser scanning data. The next part of the paper includes the results of an efficiency assessment performed for an array of different processing options, all of which were substantially accelerated with parallel computing. The processing options were divided into the generation of orthophotos using point clouds, coloring of point clouds, transformations, and the generation of a regular grid, as well as advanced processes such as the detection of planes and edges, point cloud classification, and the analysis of data for the purpose of quality control. Most algorithms had to be formulated from scratch in the context of the requirements of parallel computing. A few of the algorithms were based on existing technology developed by the Dephos Software Company and then adapted to parallel computing in the course of this research study. Processing time was determined for each process employed for a typical quantity of data processed, which helped confirm the high efficiency of the solutions proposed and the applicability of parallel computing to the processing of laser scanning data. The high efficiency of parallel computing yields new opportunities in the creation and organization of processing methods for laser scanning data.
PL
Publikacja ma na celu przedstawienie części wyników badań, jakie zrealizował zespół badawczy firmy Dephos Software w ramach projektu finansowanego przez UE pt. "Badania nad masowym przechowywaniem, udostępnianiem i przetwarzaniem przestrzennych danych laserowych". Na wstępie publikacji autorzy przedstawiają zasady organizacji algorytmu spełniającego wymogi obliczeń równoległych oraz przybliżają genezę pomysłu prowadzenia badań nad zastosowaniem procesorów graficznych do masowego przetwarzania danych skaningowych. Następnie autorzy prezentują wyniki oceny wydajności działania szeregu różnych procesów przetwarzania danych laserowych, które udało się zasadniczo przyspieszyć dzięki obliczeniom równoległym. Procesy te dzielą się na procesy podstawowe (generowanie ortoobrazów z chmur punktów, kolorowanie chmur punktów, transformacja, generowanie siatki regularnej) oraz procesy zaawansowane (wykrywanie płaszczyzn i krawędzi, klasyfikacja chmur punktów, analiza danych w celu kontroli jakości danych). W większości przypadków algorytmy musiały zostać opracowane całkowicie od nowa pod kątem wymogów przetwarzania równoległego, część korzysta z wcześniejszego dorobku technologicznego firmy Dephos Software, będąc dostosowana do równoległej metody obliczeń w ramach przeprowadzonych badań. W każdym z tych procesów określono czas działania dla typowej ilości danych przetwarzanych, co potwierdziło wysoką wydajność rozwiązań i sens zastosowania obliczeń równoległych w odniesieniu do danych skaningowych. Obliczenia równoległe dzięki swojej wysokiej wydajności otwierają nowe możliwości w tworzeniu i organizacji procesów przetwarzania danych pochodzących ze skaningu laserowego.
PL
Definicja parametrów jakościowych chmury punktów pozyskanej metodą lotniczego skanowania laserowego stanowi element niemal każdego zamówienia wiążącego się z wykonaniem lotów pomiarowych. Jakość danych LiDAR nie może być utożsamiana wyłącznie z ich dokładnością, ale jest pojęciem znacznie szerszym, obejmującym inne parametry chmury punktów pozyskanej w wyniku lotu pomiarowego. Przykładowo wymagania dotyczące parametrów takich jak pokrycie oraz gęstość określone są w polskich regulacja prawnych. Na wyżej przywołane parametry danych LiDAR mogą wpływać w pewnym stopniu czynniki związane z samym lotem, takie jak niestabilność prędkości czy linowe lub wysokościowe odstępstwa od planowanej linii lotu. Najbardziej istotnym czynnikiem wydają się być jednak wychylenia oraz drgania platformy pomiarowej. Pozyskiwanie danych LiDAR bez systemu stabilizacji oraz wibroizolacji może utrudniać zachowanie wymaganych parametrów jakościowych. W trakcie prac prowadzonych w ramach projektu, którego efektem było zbudowanie prototypu ultralekkiej stabilizowanej platformy pomiarowej dla wiatrakowca, dokonano szeregu analiz związanych z doborem odpowiedniego systemu stabilizacji rozpatrując trzy składowe wychyleń: roll, pitch, yaw. W tym celu stworzone zostały narzędzia informatyczne służące badaniu wpływu wychyleń na jakość danych LiDAR przy założeniu określonych parametrów linii nalotowych oraz ustawień pracy skanera.
EN
The definition of the quality parameters of a point cloud acquired using the airborne laser scanning is the element of almost every terms of reference involving airborne spatial data acquisition. The quality of the LiDAR data should not be identified only with accuracy and should be examined in a wider aspect taking into account other parameters of the point cloud that was acquired as a result of a flight. For instance the Polish legal regulations provide the requirements concerning the coverage of the strips and the point density. The above mentioned parameters of the LiDAR data can be influenced to some extent by many factors concerning the flight itself such as a varying speed as well as the horizontal and vertical deflections from the planned flight line. However, vibrations and angular deflections seem to influence the point cloud quality to the highest extent. LiDAR data acquisition without required stabilizing system makes keeping the required quality parameters very hard. Within the research project which aimed to develop the prototype of the ultralight, stabilized mapping platform for the gyrocopter, a number of analyses concerning the optimal stabilization scenario were carried out. Tools including scripts and computer programs for analyzing the impact of the deflections on the data quality have been developed. The proper stabilization variant has been established taking into account three separate deflection components, i.e.: roll, pitch and yaw.
PL
W chwili obecnej jedynym stosowanym rozliczeniem za zużytą energię elektryczną trakcyjną pomiędzy przewoźnikami kolejowymi a PKP Energetyka S.A. jest praca przewozowa. W związku z pojawieniem się na rynku liczników prądu stałego oraz z uwagi na docierające do Spółki sygnały ze strony przewoźników kolejowych wyrażające zainteresowanie rozliczaniem się za energię elektryczną trakcyjną na podstawie liczników, PKP Energetyka S.A. podjęta działania wychodzące naprzeciw tym oczekiwaniom. W tym celu zlecono Centrum Naukowo-Technicznemu Kolejnictwa opracowanie standardów pn. Wymagania w zakresie rozliczania energii trakcyjnej na podstawie liczników prądu stałego (nr 4109/12, grudzień 2004 r.) [6]. Następnie nawiązano kontakt z przedstawicielami Głównego Urzędu Miar w celu wypracowania procedur dopuszczenia liczników prądu stałego do eksploatacji pod względem metrologicznym i prawnym.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.