Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
As an important component of blood cells, the red blood cell plays a vital role in many diseases such as malaria and so on. Although quantitative phase imaging techniques can be used for homogeneous cellular thickness distribution to obtain ideal results, they cannot achieve 3D morphological distribution. In this paper, a new method is presented to get a 3D morphology image of red blood cell. With this method, only two cellular quantitative phase images obtained from two orthogonal directions are needed as original information. By using the grid method, the sample is divided into many small phase cubes, and then we take a layer’s cubes into calculation so that the 3D problem could be transformed into a 2D problem to elaborate. Then it can be applied to the tomographic imaging combined with the maximum entropy method according to the two orthogonal phase images. This method has been proved by a simulation of red blood cell. The results show that cellular morphological distribution can be achieved in detail very well just based on only two orthogonal phase images.
EN
Focusing on the light scattering technique and its application in cell identification, the analysis of the morphological structures of the WBCs (white blood cells) has been made, and the light scattering models of five types of the WBCs have been built. Based on the light scattering theory and applying numerical simulation techniques to a systematic study of the back-scattering intensity distribution of five types of the WBCs, some significant effects made by the internal and external morphological structures of the WBCs and the changes of their refractive index to their back-scattering distribution and certain relations between them have been found. Thus, the back-scattering theory and its application have been expanded, and it is very useful to improve the technique of cell identification.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.