Regions with warm climate are poor in organic matter or have a deficit of soil. The purpose of the work was to select the optimal mix from biodegradable wastes such as cardboard (Cb), natural textiles (Tx) newspaper (Np), colored newspaper (Cp), and office paper (Op) for creating artificial soil by combining these materials with compost and sand. To select the optimum mix, 15 samples were taken (3 from each type of waste in the following proportions: 25%, 50% and 75% ). The optimum mix was analyzed for grass germination rate and root development. Tests were performed in the laboratory with conditions similar to those of regions with warm climate and soil deficiency in a specially designed testing spot (bioterm). The effects of particular mixes on plant germination rate and growth were measured. Out of all mixes, the textile compositions Tx50 and Tx25 supported best the plant propagation. During the whole experimental process, the grass showed various growth tendencies. The best results for grass height were observed for mixes with textiles and colored newspaper. Based on this data and subsequent laboratory research, the best substrate composition was selected. For the whole period of the tests, germination rate in the pot with the mix was higher than the germination rate in the control sample with compost. Considering the experimental conditions of this research, the tested substrates can be used to aid in plant propagation, especially in regions with warm climate and soil deficiencies, and for restoration of damaged land areas.
In this study, the effects of replacing fine aggregate by granulated lead/zinc slag waste (GLZSW) on the thickness of concrete shields against X-ray radiation and on the compressive strength of concrete have been investigated. The fine aggregate was substituted by GLZSW in four percentages: 25%, 50%, 75%, and 100% (by weight). The first aim of the present study was to compare the thicknesses of concretes with GLZSW and control concrete using Lead Equivalent (LE). The second aim was to assess the effects of replacing fine aggregate by GLZSW on the compressive strength of concrete. Results of this study indicated that the compressive strength of mixed concretes increased significantly compared to the control upon replacing fine aggregate by GLZSW; the mixture containing 100% GLZSW had the greatest compressive strength. Further, the inclusion of GLZSW as a substitute for fine aggregate increased the radiation attenuation properties and consequently decreased the thickness of concrete shields in direct proportion to the mixing ratio of GLZSW. The results revealed that concrete mixes containing 100% GLZSW offered the greatest reduction in shield thickness. The study shows that there is a promising future for the use of GLZSW as substitute for fine aggregate in concrete used to shield against X-ray radiation.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.