Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
3,7-Dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT) is one of the most important intermediates in the synthesis of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX). A suitably modified Bachmann process, nitrolysis of solid hexamine in the presence of ammonium nitrate-nitric acid and acetic anhydride on a laboratory scale, is introduced to increase the efficiency, production capacity and purity of the DPT produced. Various quantitative and qualitative analytical methods were used for the identification and quality control of the product. A central composite design (CCD) of experiments was used to optimize the production process, increasing the production capacity, reducing the amount of acetic acid as the reaction medium to a suitable limit, and examining the effects of the main factors impacting on the efficiency of the nitration, e.g. the volume of ammonium nitrate-nitric acid solution, nitration temperature reactor addition time and volume of acetic anhydride. The overall results indicated that DPT was obtained with an efficiency of 64.58% and a production capacity of 20.77 (100 g·mL−1).
EN
This work introduces a suitable method for the optimization of selective synthesis of 1,3,5,7-tetranitro-1,3,5,7-tetrazocane (HMX), as one of the most well-known high explosives, from the aspects of production capacity and efficiency, by nitration of 3,7-dinitro-1,3,5,7-tetraazabicyclo[3,3,1]nonane (DPT). The effective factors in the productive capacity of HMX and the synthesis of a product from raw DPT with high capacity, purity, and efficiency have been identified. The required qualitative and quantitative analyses were performed for the identification and confirmation of the product quality. In order to optimize the process of increasing the capacity of HMX production and evaluation of the effects of different factors on the production capacity, a series of experiments were designed and performed by using central composite design (CCD). Practical studies and statistical analyses showed good conformity between the model presented and the actual results, allowing the selective production of HMX with an efficiency of greater than 70% and a high production capacity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.