A metaheuristic proposed by us recently, Ant Colony Optimization (ACO) hybridized with socio-cognitive inspirations, turned out to generate interesting results compared to classic ACO. Even though it does not always find better solutions to the considered problems, it usually finds sub-optimal solutions usually. Moreover, instead of a trial-and-error approach to configure the parameters of the ant species in the population, in our approach, the actual structure of the population emerges from predefined species-to-species ant migration strategies. Experimental results of our approach are compared against classic ACO and selected socio-cognitive versions of this algorithm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.