Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Artykuł przedstawia wybrane zagadnienia związane z wykorzystaniem oraz osuszaniem węgla brunatnego dla potrzeb przemysłu energetycznego. Badania eksperymentalne przeprowadzono dla próbek węgla ze złoża Bełchatów suszonych w przegrzanej parze wodnej w zakresie temperatur 110 -170 [°C] pod ciśnieniem atmosferycznym. Pomiary obejmowały zmiany wagi, rozkład profilu temperatur oraz zmiany struktury próbki. Kinetykę zjawiska opisano w formie krzywych suszenia oraz zależności szybkości suszenia i profilu temperatur od czasu, na podstawie których wyróżniono charakterystyczne fazy procesu. Charakterystyki suszenia wyznaczone w eksperymencie są niezbędne do zaprojektowania efektywnego przemysłowego systemu osuszania węgla umożliwiającego wykorzystanie ciepła utajonego zawartego w odparowanej z węgla wodzie.
EN
This paper presents selected issues related to the use and drying of the lignite for the energy industry. Experimental investigations were conducted for the lignite samples from Belchatow lignite mine, which were dried in a superheated steam in the temperature range 110 -170 [°C] and atmospheric pressure. Each experiment included measurements of the changes of weight, the temperature profile distribution and changes in the structure of the sample. The kinetics of the process was described in the form of the functions of weight, drying speed and temperatures in correlation with time, which were used to distinguish the characteristic stages of the drying process. Drying characteristics derived in the experiment are essential for designing an effective industrial coal drying system, which allows for using of the latent heat contained in the water evaporated from the coal.
2
Content available remote Dynamic behaviours of driving torque of machine tools in microscopic motion
EN
Purpose: This paper presented more details for control analysis of the dynamic behaviors of the feed drive systems that have been widely used in machine tools. Design/methodology/approach: In order to analyze the nonlinear behaviors of the feed drive system in microscopic motion, the dynamic driving torques were measured when the sinusoidal waves of the microscopic displacement are applied to the AC servo motor. Findings: The experimental results showed that the distortion of the driving torque response to the sinusoidal wave input of the microscopic displacement becomes gradually evident as the input amplitude increases. With the particular input amplitudes of 200 mm and over, it can be found that the driving torque response for the displacement show the periodic response. It is considered in the AC servo motor used by experiment that the vibration is caused whenever the motor rotates by 20 degrees. It is consider that it is affected by the structure of the motor. Research limitations/implications: The results of this research covered the feed drive system with the AC servo motor and rolling guide. However, because the dynamic behavior the rolling element was analyzed, it was also applicable the feed drive system with the linear motor and rolling guide. Practical implications: This paper cleared more details of driving torque in microscopic motion, the performance of the feed drive system with rolling elements would be improved. Originality/value: The objective of this research project was to develop the feed drive system with the one mechanism and with the high accuracy.
3
Content available remote Dynamic behaviours of driving torque of machine tools in microscopic motion
EN
Purpose: This paper presented more details for control analysis of the dynamic behaviors of the feed drive systems that have been widely used in machine tools. Design/methodology/approach: In order to analyze the nonlinear behaviors of the feed drive system in microscopic motion, the dynamic driving torques were measured when the sinusoidal waves of the microscopic displacement are applied to the AC servo motor. Findings: The experimental results showed that the distortion of the driving torque responses to the sinusoidal wave input of the microscopic displacement become gradually evident as the input amplitude increases. It was evident that the driving torque depends on the input amplitude, but not the input frequency. With the particular input amplitudes of 5um and over, it was clear that the trajectories for different initial driving torques show the same patterns. Research limitations/implications: The results of this research covered the feed drive system with the AC servo motor and rolling guide. However, because the dynamic behavior the rolling element was analyzed, it was alse applicable the feed drive system with the linear motor and rolling guide. Practical implications: This paper cleared more details of driving torque in(at) microscopic motion, the performance of the feed drive system with rolling elements would be improved. Originality/value: The objective of this research project was to develop the feed drive system with the one mechanism and with the high accuracy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.