Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Digital Material Representation (DMR) concept in application to numerical investigation of the two different types of epoxy/glass composite morphologies under loading conditions is addressed within the paper. First, two algorithms for reconstruction of digital microstruc-tures based on metallography investigations are developed. Then, material properties of the investigated epoxy matrix and glass fillers are evaluated based on an in-situ tensile test as well as nano-indentation, respectively. At this stage a numerical investigation is also extended by series of experimental tensile tests to understand basic mechanisms occurring during deformation of the two different types of glass particles fillers. Finally, an example of practical application of the developed digital microstructure model for multi scale calcula-tions of the epoxy/glass composite under loading is presented.
EN
A through scale investigation of a porosity shape and morphology after sintering of the Distalloy AB powder is the goal of the paper. First, the classical two dimensional analysis of porosity geometrical aspects is presented with the use of the systematic scanning technique (SST) and the light microscopy (LM). Then, a three dimensional investigation is realized with the non-destructive computed tomography (CT) technique. Advantages and limitations of the approach are evaluated within the work. Finally, to investigate small pores which are beyond the computed tomography resolution, the destructive serial sectioning technique was applied. The developed three dimensional reconstruction algorithm of two dimensional images of obtained cross sections is also presented. Finally, an example of possible practical application of obtained three dimensional digital representation of porosity in sintered samples, during the finite element (FE) modelling of deformation conditions is presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.