The main purpose of the paper is the proposal of multi-level simulation, suited for the evaluation of the lifetime of critical electronic devices (electrolytic capacitors). The aim of this issue is to imagine about the expected operation of complex and expensive power electronic systems, when the failure of the most critical component occurs. For that reason, various operational conditions and various physical influences must be considered (e.g. mechanical, humidity, electrical, heat stress), where nonlinearities are naturally introduced. Verification of the proposal is given, whereby the life-time estimation of an electrolytic capacitor operated in a DC-DC converter during various operational conditions is shown. At this point electrical and heat stress is considered for lifetime influence. First, the current state in the field of mathematical modeling of the lifetime for electrolytic capacitors, considering main phenomena is introduced. Next, individual sub-models for multi-level simulation purposes are developed, including a thermal simulation model and electrical simulation model. Several complexities of individual models are mutually compared in order to evaluate their accuracy and suitability for further use. Proper simulation tools have been mutually linked and data transfer was secured, in order to have the possibility of investigation of a lifetime depend on the changes of various variables.
This paper deals with utilization of full bridge converter with synchronous rectifier for electroplating. Main focus of the paper is on minimization of conduction losses. In paper the diode rectifier losses and synchronous rectifier losses and efficiency are compared. The experimental verifications show better efficiency of synchronous rectifier which is shown on graph and thermal images of both types of devices at the end of the paper.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.