Celem artykułu jest charakterystyka międzynarodowego rynku węgla energetycznego bazująca na najnowszych dostępnych danych. Informacje sięgają pierwszej połowy 2018 roku. W artykule skupiono się na opisie trzech największych eksporterów i importerów węgla energetycznego. Reprezentantów w wymienionych kategoriach wyłoniono posługując się najnowszymi światowymi statystykami dotyczącymi 2017 roku. W 2017 r. światowa produkcja węgla energetycznego wyniosła 5,68 mld ton i przewyższyła produkcję z 2016 r. o 4%. Od kilku lat niezmiennie światową czołówkę eksporterów węgla energetycznego stanowią: Indonezja, Australia i Rosja. Łącznie te trzy państwa w 2017 r. dostarczyły na rynek międzynarodowy 73% węgla energetycznego. Natomiast za 46% importu węgla energetycznego w skali globalnej (dane za 2017 r.) odpowiadają trzy kraje azjatyckie: Chiny, Indie i Japonia. W przypadku każdego z tych sześciu wymienionych państw (czyli dla: trzech głównych światowych eksporterów i trzech głównych światowych importerów) w artykule zaprezentowano wolumeny odnoszące się do produkcji, eksportu lub importu węgla. Zamieszczono także kierunki dostaw lub głównych eksporterów węgla do danego kraju. Pod koniec artykuły przedstawiono sytuację cenową, jaka wystąpiła na w pierwszej połowie 2018 roku na rynku europejskim oraz azjatyckim.
EN
The purpose of the article was to characterize the international steam coal market based on the latest available data. The information goes back to the first half of 2018. The article focuses on the description of the three largest exporters and importers of steam coal. Representatives in these categories were selected using the latest global statistics on 2017. In 2017, global production of steam coal amounted to 5.68 billion tons and exceeded production in 2016 by 4%. For several years, invariably the world’s leading exporters of steam coal are: Indonesia, Australia and Russia. In total, these three countries in 2017 supplied 73% of steam coal to the international market. However, for the 46% of global steam coal imports (data for 2017), three Asian countries are responsible: China, India and Japan. For each of the six listed countries (i.e. for: three major global exporters and three major global importers), the paper presents volumes related to coal production, export or import. The directions of deliveries or major coal exporters to a given country were also included. At the end of the article, the price situation was presented, as it appeared in the first half of 2018 on the European and Asian markets.
Biomasa jest jednym z najczęściej wykorzystywanych źródeł energii odnawialnej. Drewno od wieków służyło człowiekowi do ogrzewania swoich domostw, a w dzisiejszych czasach jest istotne podczas wytwarzania energii elektrycznej. W artykule omówiono zagadnienia prawne związane z biomasą, przedstawiono klasyfikację biomasy do celów energetycznych, parametry jakościowe wybranych paliw ekologicznych, wymagania jakościowe dotyczące biomasy, a także handel biomasą w świecie. W artykule porównano wymagania jakościowe stawiane biomasie kupowanej przez poszczególne spółki z sektora elektroenergetycznego (głównie wymiary, wartość opałową, zawartość wilgoci, zawartość popiołu, siarki i chloru). Wykonano także analizę ceny pelletów drzewnych na rynkach międzynarodowych, reprezentowanych przez giełdy: RBCN, EEX oraz BALTPOOL. Z analizy rynku wyraźnie wynika, że międzynarodowy rynek pelletu przemysłowego zdominowany jest przez handel międzykontynentalny, dotyczy to głównie wymiany pomiędzy Stanami Zjednoczonymi Ameryki Północnej, jako producentem, i Europą, jako konsumentem. Najwięcej biomasy importuje Wielka Brytania, przede wszystkim dla swojej elektrowni biomasowej Drax, a biomasa ta pochodzi z USA i Kanady. Oprócz Wielkiej Brytanii znaczącymi importerami pelletu drzewnego są Holandia, Belgia i Dania. Sądząc po zainteresowaniu polskich firm energetycznych zakupem biomasy, również w Polsce należy spodziewać się rozwoju rynku biomasowego.
EN
Biomass is one of the most frequently used sources of renewable energy. For centuries, wood has been used by people to heat their homes, and nowadays it is also used to generate electricity. The article discusses legal issues related to biomass, classification of biomass for energy purposes, quality parameters of selected ecological fuels, quality requirements for biomass, as well as biomass trade in the world. The article compares the quality requirements for biomass purchased by individual companies from the power sector (mainly dimensions, calorific value, moisture content, ash content, sulfur and chlorine). An analysis of the price of wood pellets on international markets, represented by the biomass stock exchanges: RBCN, EEX and BALTPOOL was also performed. The market analysis clearly shows that the international market for industrial pellets is dominated by intercontinental trade, which mainly concerns exchanges between the United States of America as a producer and Europe as a consumer. The largest amount of biomass is imported by the United Kingdom, mainly for its Drax biomass power plant, and this biomass comes from the USA and Canada. In addition to Great Britain, significant importers of wood pellets are the Netherlands, Belgium and Denmark. Judging by the interest of Polish energy companies in the purchase of biomass, also in Poland, the development of the biomass market should be expected.
W artykule przedstawiono funkcjonowanie systemu handlu emisjami w Unii Europejskiej, zwracając uwagę na fakt, że UE jest prekursorem wdrażania tego systemu, który obecnie rozprzestrzenia się również na inne kraje i regiony. Pokazano jak zmieniały się ceny uprawnień w latach 2016-2017, a także przedstawiono prognozy na kolejne lata aż do 2030 roku. Ceny uprawnień podano zarówno jako notowania dzienne, jak i średnie kwartalne. Przedstawiono też ceny w poszczególnych okresach rozliczeniowych, czyli w latach 2006-2008, 2008-2013 oraz 2013-2018. W dalszej części artykułu omówiono ilości poszczególnych substancji, wyemitowanych w roku 2015 przez źródła spalania zaangażowane w produkcję energii elektrycznej oraz energii elektrycznej i ciepła oraz wskaźniki emisyjności obliczone z uwzględnieniem wielkości wyprodukowanej energii elektrycznej, a także wielkości emisji CO2 w latach 2015 i 2016 dla poszczególnych branż. W zestawieniach pokazano wielkość emisji gazów cieplarnianych w UE w latach 1990 – 2015, w tonach ekwiwalentu CO2, ogółem i w przeliczeniu na osobę w wybranych krajach UE.
EN
The article presents the functioning of the emissions trading system in the European Union, noting the fact that the EU is a precursor to the implementation of this system, which is now also spreading to other countries and regions. It was shown how the prices of allowances changed in 2016-2017, and forecasts for subsequent years until 2030 were presented. The prices of allowances are given both as daily and quarterly averages. The prices were also presented in individual settlement periods, i.e. in 2006-2008, 2008-2013 and 2013-2018. The next part of the article discusses the amounts of individual substances, emitted in 2015 by combustion sources involved in the production of electricity and electricity and heat, and emission ratios calculated taking into account the volume of electricity produced, as well as CO2 emissions in 2015 and 2016 for individual industries. The list shows the volume of greenhouse gas emissions in the EU in the years 1990 - 2015, in tonnes of CO2 equivalent, total and per capita in selected EU countries.
A significant part of hard coal production (15–19% in the years 2010–2017, i.e. 1.0–1.3 billion tons per year) is traded on the international market. The majority of coal trade takes place by sea, accounting for 91–94% of the total coal trade. The article discusses the share of coal in international seaborne trade and the largest coal ports. Coal is one the five major bulk commodities (in addition to iron ore, grain, bauxite, alumina, and phosphate rock). In the years 2010–2016, the share of coal in international seaborne trade and major bulk commodities was 36–41% and 11–12%, respectively. Based on the analysis of coal throughput in different ports worldwide, the ports with the largest throughput include the ports of Qinhuangdao (China), Newcastle (Australia), and Richards Bay (South Africa). For 2013–2017, their throughput amounted to a total of 411–476 million tons of coal. The largest coal exporting countries were: Australia, Indonesia, Russia, Colombia, South Africa, and the US (a total of 85% share in global coal exports), while the largest importers are Asian countries: China, India, Japan, South Korea and Taiwan (a 64% share in global imports). In Europe, Germany is the largest importer of coal (54 million tons imported in 2016). The article also discusses the freight costs and the bulk carrier fleet. Taking the price of coal at the recipient’s (i.e. at the importer’s port) into account, the share of freight costs in the CIF price of steam coal (the price of a good delivered at the frontier of the importing country) was at the level of 10–14%. In the years 2010–2016, the share of bulk carriers in the world fleet was in the range of 11–15%. In terms of tonnage, bulk carriers accounted for 31–35% of the total tonnage of all types of ships in the world. The share of new (1–4 years) bulk carriers in the total number of ships on a global scale in the years 2010–2016 was 29–46%.
PL
Międzynarodowy rynek węgla kamiennego stanowi fragment jego światowej produkcji (15–19% w latach 2010–2017, tj. 1,0–1,3 mld ton/rok). Główna część międzynarodowych obrotów węgla realizowana jest drogą morską stanowiąc 91–94% ogólnych obrotów handlowych tym surowcem. W artykule skupiono się na omówieniu udziału węgla w światowych morskich przewozach ładunkowych, jak również głównych węglowych portów morskich. Węgiel stanowi jeden z pięciu głównych ładunków masowych suchych wyszczególnianych w statystykach morskich (obok rudy żelaza, zbóż, boksytów i aluminium oraz fosforytów). W latach 2010–2016 udział węgla w strukturze morskich przewozów ładunków w skali globalnej wynosił 36–41%, a w strukturze pięciu głównych ładunków suchych – 11–12%. Z analizy przeładunków węgla w różnych morskich portach świata wynika, że pod względem tonażowym największe przeładunki realizowane są w portach: Qinhuangdao (Chiny), Newcastle (Australia) i Richards Bay (RPA). W latach 2013–2017 przeładunki te rocznie wynosiły w sumie 411–476 mln ton węgla. Największymi eksporterami węgla na świecie są państwa: Australia, Indonezja, Rosja, Kolumbia, RPA i USA (łącznie 85% udziału w globalnym eksporcie węgla), a największymi importerami są głównie kraje azjatyckie: Chiny, Indie, Japonia, Korea Płd. i Tajwan (64% udziału w światowym imporcie). W przypadku Europy największym importerem węgla są Niemcy (w 2016 r. importowały 54 mln ton). W artykule omówiono także koszty frachtu morskiego oraz flotę masowców. Biorąc pod uwagę cenę węgla u odbiorcy (czyli w porcie importera), udział kosztów frachtów w cenie węgla u odbiorcy w ostatnich latach kształtował się średnio na poziomie 10–14%. W latach 2010–2016 udział masowców w światowej flocie zawierał się w przedziale 11–15%, a pod względem tonażowym masowce stanowiły 31–35% (łącznego tonażu wszystkich rodzajów statków na świecie). Udział masowców najmłodszych (1–4-letnich) w ogólnej liczbie statków w skali globalnej w latach 2010–2016 wynosił 29–46%.
Węgiel kamienny jest jednym z głównych paliw stałych zużywanych przez polskie gospodarstwa domowe. Głównym czynnikiem wpływającym na popularność tego paliwa jest łatwa dostępność (przede wszystkim z krajowych kopalń) oraz relatywnie niskie koszty ogrzewania. W latach 2005–2016 roczne zużycie węgla kamiennego w gospodarstwach domowych kształtowało się na poziomie od 7,2 do 10,8 mln ton. W trosce o zdrowie mieszkańców oraz zapobieganiu negatywnemu oddziaływaniu na środowisko, polskie prawo dało władzom samorządowym możliwość do wprowadzania uchwał antysmogowym. Według stanu na początek 2018 r. aż siedem województw w Polsce wprowadziło już uchwały antysmogowe (województwo: małopolskie, śląskie, opolskie, wielkopolskie, łódzkie, mazowieckie i dolnośląskie), jedno posiada jej projekt (województwo podkarpackie), a trzy rozważają ich przyjęcie (województwo: lubuskie, świętokrzyskie i lubelskie). W siedmiu województwach, w których już obowiązują uchwały antysmogowe, gospodarstwa domowe łącznie spalają 65% węgla zużytego we wszystkich gospodarstwach domowych w Polsce (łącznie w 2016 r. było to 6,7 mln ton węgla kamiennego). W związku z wprowadzaniem uchwał antysmogowych, jak również rozporządzeniem dla Ekoprojektu kotłów na paliwa stałe nastąpił między innymi wzrost zainteresowania kotłami spełniającymi stawiane przez nich wymagania emisyjne. Według danych Stowarzyszenia Producentów i Importerów Urządzeń Grzewczych (SPIUG) sprzedaż kotłów na paliwa stałe w 2016 roku stanowiła 38% ogólnego rynku kotłów w Polsce i kształtowała się na poziomie około 150 tys. kotłów. Wszystkie wymienione uchwały antysmogowe łączy między innymi zakaz stosowania: węgla brunatnego, mułów, flotokoncentratów, niektórych miałów oraz mokrej biomasy. Zakaz spalania mułów spowoduje, że producenci węgla staną przed problemem ich zagospodarowania. Choć wprowadzanie uchwał antysmogowych przyczyni się do zmniejszenia zużycia węgla kamiennego przez gospodarstwa domowe, to jednak należy spodziewać się wzrostu zapotrzebowania na węgiel o wysokiej jakości dedykowany nowoczesnym kotłom, zwłaszcza na kwalifikowane paliwa węglowe.
EN
Hard coal is one of the main solid fuels consumed by Polish households. The main factors affecting the popularity of this fuel is easy availability (mainly from domestic mines) and relatively low heating costs. In the years 2005–2016, annual hard coal consumption in households ranged from 7.2 to 10.8 million tonnes. For the sake of the health of residents and prevention of negative impact on the environment, Polish law gave the local government authorities the possibility to introduce anti-smog resolutions. As of the beginning of 2018, as many as seven voivodships in Poland have already introduced anti-smog resolutions (voivodship: Małopolskie, Śląskie, Opolskie, Wielkopolskie, Łódzkie, Mazowieckie and Dolnośląskie), one has its project (Podkarpackie voivodship), and three are considering adopting them (voivodeship: Lubuskie, Świętokrzyskie and Lubelskie). In seven voivodships where anti-smog resolutions are already in effect, households collectively burn 65% of the coal consumed in all households in Poland (in total in 2016 it was 6.7 million tonnes of hard coal). In connection with the introduction of anti-smog resolutions, as well as the Regulation for Ecodesign of boilers for solid fuels there was, inter alia, increased interest in boilers meeting the emission requirements they set. According to the data of the Association of Producers and Importers of Heating Devices (SPIUG), the sale of solid fuel boilers in 2016 accounted for 38% of the total boiler market in Poland and amounted to around 150,000 boilers. All mentioned anti-smog resolutions combine, inter alia, the ban on the use of: brown coal, coal silts, flotoconcentrates, some fine coal and wet biomass. Prohibition of burning coal silts will cause coal producers to face the problem of their management. Although the introduction of anti-smog resolutions will contribute to the reduction of hard coal consumption by households, one should expect an increase in demand for high quality coal dedicated to modern boilers, especially for qualified coal fuels.
Households are the most significant group of consumers in the municipal and household sector in Poland. In 2010-2016, households consumed annually from 8.9 to 10.8 million Mg of coal (77-81% share in this sector). As of the beginning of 2018, seven voivodships in Poland have already introduced anti-smog resolutions, one has its draft, three are considering introduction of such resolutions. In the face of introducing anti-smog resolutions, the analysis of coal consumption by households was conducted for a situation where anti-smog resolutions will be introduced in all voivodships in Poland. A forecast of hard coal consumption by Polish households in 2017-2030 was presented in the article. Two scenarios differentiated in terms of calorific value of coal were taken into account: (i) concerned coal with a calorific value of 24 MJ/kg (min. Q for eco-pea coal: grain size 5.0-31.5 mm), (ii) – coals with a calorific value of 26 MJ/kg (Q recommended for use by producers of class 5 boilers). In the perspective of 2030, the largest decrease in hard coal consumption can be expected (jointly) in the voivodships of Śląskie, Dolnośląskie, Opolskie and Lubuskie. Under the assumptions made, in relation to 2016, it may be reduced by half and fall from 2.8 to the level of 1.4-1.5 million Mg. The smallest decreases in consumption may occur (jointly) in the Małopolskie, Lubelskie, Podkarpackie and Świętokrzyskie voivodships – decrease by 16-22% and fall from 2.6 to approximately 1.9-2.0 million Mg. On a national scale, coal consumption may decrease from the current 10.4 (2016) to around 6.3-6.8 million Mg (a decrease of 30-35%). Despite the decrease in hard coal consumption in the 2030 perspective, one should expect an increase in demand for high quality coal dedicated to modern boilers (usually pea assortments) as well as qualified coal fuels (mainly eco-pea coal).
PL
Gospodarstwa domowe stanowią najbardziej znaczącą grupę konsumentów w sektorze drobnych odbiorców w Polsce. W latach 2010-2016 gospodarstwa domowe zużywały rocznie od 8,9 do 10,8 mln Mg węgla (77-81% udział w tym sektorze). Według stanu na początek 2018 r. siedem województw w Polsce wprowadziło już uchwały antysmogowe, jedno posiada jej projekt, trzy rozważają ich przyjęcie. W obliczu wprowadzania uchwał antysmogowych przeprowadzono analizę zużycia węgla przez gospodarstwa domowe w sytuacji, gdy uchwały antysmogowe będą obowiązywać we wszystkich województwach w Polsce. W artykule wykonano prognozę zużycia węgla kamiennego przez polskie gospodarstwa domowe w latach 2017-2030. Wzięto pod uwagę dwa scenariusze zróżnicowane pod względem wartości opałowej węgla: (i) dotyczył węgli o wartości opałowej wynoszącej 24 MJ/kg (min. Q dla ekogroszków – węgiel o klasie ziarnowej 5,0-31,5 mm), (ii) – węgli o wartości opałowej wynoszącej 26 MJ/kg (Q zalecane do stosowania przez producentów kotłów 5 klasy). W perspektywie 2030 r. największy spadek zużycia węgla kamiennego można spodziewać się (łącznie) w woj. śląskie, dolnośląskie, opolskie i lubuskie. Przy przyjętych założeniach, względem 2016 r. może ono zmniejszyć się o połowę i spaść z 2,8 do poziomu rzędu 1,4-1,5 mln Mg. Najmniejsze spadki zużycia mogą wystąpić (łącznie) w woj.: małopolskim, lubelskim, podkarpackim i świętokrzyskim – może zmniejszyć się o 16-22% i spaść z 2,6 do około 1,9-2,0 mln Mg. W skali kraju zużycie węgla może zmniejszyć się z obecnych 10,4 (2016 r.) do około 6,3-6,8 mln Mg (spadek o 30-35%). Pomimo spadku zużycia węgla kamiennego w perspektywie 2030 należy spodziewać się wzrostu zapotrzebowania na węgiel o wysokiej jakości dedykowany nowoczesnym kotłom (najczęściej o sortymencie groszek), jak również na kwalifikowane paliwa węglowe (głównie ekogroszek).
Obserwując sytuację w energetyce nietrudno zauważyć, że zachodzą w niej bardzo głębokie zmiany. Polegają one przede wszystkim na odchodzeniu od energetyki konwencjonalnej do energetyki odnawialnej. Taką tendencję ma zwłaszcza energetyka w unii Europejskiej. Europa stara się być prekursorem w dziedzinie odnawialnych technologii i liderem w walce z globalnym ociepleniem. Likwidowany jest przemysł wydobywczy, a elektrownie węglowe wypierane są przez odnawialne źródła energii. Sytuacja taka wynika nie tylko z dyrektyw unijnych, ale również oddolnych inicjatyw społecznych inspirowanych przez grupy ekologów. Blokowane jest uruchamianie nowych odkrywek węgla brunatnego ze względu na brak akceptacji społecznej, a także budowa elektrowni konwencjonalnych. Nie pomagają argumenty ekonomiczne przemawiające za rozwojem energetyki opartej na węglu brunatnym, który jest paliwem zdecydowanie tańszym niż inne, czy też zapewnienia potencjalnych inwestorów o stworzeniu nowych miejsc pracy. Również w innych regionach świata wstrzymywane są inwestycje węglowe. z badań przeprowadzonych przez koncern węglowy CoalSwarm wynika, że w 2016 roku drastycznie spadła liczba inwestycji w energetyce węglowej w świecie. Nawet w Chinach i Indiach, gdzie najbardziej w ostatnich latach rozwijała się energetyka węglowa, wstrzymano około 100 inwestycji. Niejasna jest sytuacja w USA. Chociaż Barack Obama podpisał porozumienie paryskie, to obecny prezydent Stanów Zjednoczonych Donald Trump wypowiedział to porozumienie i w licznych wystąpieniach zapewnia o chęci powrotu do dominującej roli węgla w gospodarce amerykańskiej. W Polsce nadal utrzymywana jest struktura węglowa energetyki, ale według zapowiedzi resortu energii nowy blok w elektrowni Ostrołęka będzie ostatnim budowanym w Polsce blokiem węglowym. Pozwala to sądzić, że w najbliższym czasie może nastąpić zwrot w polityce energetycznej Polski, a długo oczekiwany dokument Polityka energetyczna Polski do 2050 roku określi kierunki zmian na następne lata.
EN
Observing the situation in the power industry it is easy to see that there are very deep changes in it. They rely primarily on moving away from conventional energy to renewable energy. This is particularly the case for energy in the European union. Europe strives to be a forerunner in renewable technologies and a leader in the fight against global warming. The mining industry is being abolished and coal-fired power stations are being displaced by renewable energy sources. This situation is not only a result of EU directives but also of grassroots social initiatives inspired by environmental groups. The new lignite openings are being blocked, due to the lack of public acceptance, and the construction of conventional power plants. They do not help economic arguments for the development of energy based on coal, lignite, fuel that is significantly cheaper than the other, or to provide potential investors with the creation of new jobs. Also, coal investments are suspended in other regions of the world. CoalSwarm coal research shows that 2016 saw a dramatic fall in the amount of coal investment in the world. Even in China and India, where most of the coal industry has developed in recent years, about 100 investments have been suspended. The situation in the US is unclear. Although Barack Obama signed the Paris Agreement, current united States President Donal Trump has spoken out about this agreement and in numerous speeches and is eager to return to the dominant role of coal in the American economy. Poland still maintains the carbon structure of the power industry, but the Minister of Energy has announced that the new block at the Ostrołęka power plant will be the last coal-fired power plant to be built in Poland. This statement allows us to believe that there may be a return to Poland’s energy policy in the nearest future, and the long-awaited document, Poland’s energy policy until 2050, will determine the direction of change for the coming years.
Po energetyce zawodowej sektor drobnych odbiorców jest drugim ważnym konsumentem węgla energetycznego w Polsce, w latach 2005–2015 zużywającym 10,3–14,3 mln ton węgla (15–22% w skali kraju). Statystycznie wyróżniane są w nim trzy grupy konsumentów: gospodarstwa domowe, rolnictwo oraz tzw. pozostali odbiorcy, z których najbardziej znaczącą rolę odgrywają gospodarstwa domowe (77–81% rocznego zużycia węgla przez cały sektor). Udział rolnictwa wynosił 12–14% (1,4–1,8 mln ton węgla na rok), a pozostałe kilka procent – grupa pozostałych odbiorców (0,9–1,1 mln ton). Zużycie węgla w całym sektorze, jak również w każdej z grup statystycznych zróżnicowane jest zarówno pod względem regionalnym, jak również wojewódzkim. Pod względem wolumenu największe zużycie węgla przypada na gospodarstwa domowe z regionu N-E (1,9–2,9 mln ton). W przypadku rolnictwa są to regiony północne (57–62%; łącznie: 0,8–1,1 mln ton węgla/rok). W artykule przeprowadzono także szacunkowy podział mieszkań wg trzech nośników głównych nośników energii zużytych w celach grzewczych: paliwa stałe (dominuje węgiel kamienny), ciepło sieciowe i gaz ziemny. Stwierdzono, że pod względem regionalnym największym udzia- łem mieszkań opalanych węglem kamiennym dysponują dwa regiony (reg. S-W i N-E; po 26%). Obliczono także koszty ogrzewania przykładowego domu jednorodzinnego położonego na wsi. Wzięto pod uwagę te nośniki energii, które są najbardziej dostępne dla obszarów wiejskich. W wyniku analizy stwierdzono, że węgiel kamienny byłby jednym z najtańszych paliw. Koszty rocznego ogrzewania domu węglem grubym, czy ekogroszkiem nie przekroczyłyby 3 tys. złotych/rok (wg cen z 2016 r.).
EN
After the power industry, the municipal and housing sector is the second most important consumer of hard coal in Poland, using 10.3–14.3 million tons of coal (15–22% nationwide) in 2005–2015. Statistically, there are three groups of consumers: households, agriculture and so-called other consumers. The most significant of which are households (77–81% of annual consumption of coal across the sector). The share of agriculture was 12–14% (1.4–1.8 million tons of coal per year) and the remaining few percent – the other consumer group (0.9–1.1 million tons). Hard coal consumption across the sector as well as in each statistical group is varied in both and voivodships. In terms of volume, the largest amount of hard coal is spent on households in the N-E region (1.9–2.9 million tons). In the case of agriculture, these are northern regions (57–62%, total: 0.8–1.1 million tons of hard coal/year). The article also makes an estimate of the distribution of dwellings by the three main carriers used for heating purposes: solid fuels (hard coal), district heating and natural gas. It has been found that in terms of region, the two largest regions in Poland (S-W and N-E, 26%) have the highest share of hard coal-fired dwellings. The cost of heating an exemplary detached house in rural areas was also calculated. These are the energy vehicles that are most accessible to rural areas. As a result of the analysis, it was found that hard coal would be one of the cheapest fuels. The cost of heating the house a year with coarse coal or eco-pea coal will not exceed PLN 3 thousand (according to 2016 prices).
W artykule omówiono pozycję węgla w zużyciu pierwotnych nośników energii w świecie oraz w Polsce. Mimo spadku zużycia węgla w ostatnich dwóch latach jego udział w skali globalnej kształtuje się na poziomie ok. 28%. Dla porównania w Europie ten udział wynosi 15%, natomiast w Polsce 56%. Światowa produkcja węgla w 2016 r. wyniosła 3,66 mld toe. Spadek światowej produkcji węgla w stosunku do roku 2015 zmniejszył się o 6% i w głównej mierze był spowodowany spadkiem produkcji w Chinach. Największy udział węgla w zużyciu pierwotnych nośników w świecie posiadają: Republika Południowej Afryki (ok. 70%), następnie Chiny (62%) oraz Indie (57%). W 2015 roku światowa produkcja energii elektrycznej wyniosła 24 255 TWh, z czego udział energii wytworzonej z węgla wyniósł 39% (tj. 9538 TWh). Był to najniższy udział energetyki węglowej uzyskany w latach 2010–2015. Udział energii elektrycznej wytworzonej z węgla w krajach Unii Europejskiej w 2015 r. wyniósł 26% (tj. 826 TWh). W Polsce udział paliw stałych w produkcji energii elektrycznej w 2015 r. kształtował się na poziomie 79%, w tym na węglu kamiennym – 47%, a na węglu brunatnym – 32%. Od 2010 r. udział paliw stałych w produkcji energii elektrycznej zmniejszył się o 7,4 punkty procentowe. W Polsce najbardziej dynamicznie rozwija się energetyka wiatrowa. Z tej energetyki produkuje się już około 11 TWh (dane za 2015 r.). Od 2010 roku energetyka ta odnotowała ponad 5-krotny wzrost. W latach 2010–2016 elektrownie i elektrociepłownie zawodowe zużyły od 36,78 do 42,94 mln ton węgla energetycznego. Z tego udział sprzedaży realizowanej przez krajowych producentów węgla stanowił od 81 do 93% (32,45–38,88 mln ton). Niedobór rodzimego surowca uzupełniany był dostawami węgla z importu. W latach 2010–2016 łączny import węgla energetycznego do Polski zmieniał się od 5,61 do 12,72 mln ton. W latach 2010–2014 r. Polska była importerem netto węgla energetycznego. Sprzedaż importowanego węgla energetycznego do energetyki zawodowej w latach 2012–2016 zmieniała się od 0,32 do 1,66 mln ton. Udział sprzedanego węgla importowanego zakupionego przez energetykę zawodową w latach 2012–2016 stanowił: (i) 4,6–17,5% sprzedaży ogólnie zaimportowanego węgla energetycznego; (ii) 0,9–3,7% sprzedaży krajowej do energetyki oraz (iii) 0,8–4,3% zużycia węgla przez elektrownie i elektrociepłownie zawodowe.
EN
The article discusses the position of coal in the consumption of primary energy carriers in the world and in Poland. Despite a decrease in the consumption of coal in the last two years, its share in the global economy is about 28%. For comparison in Europe this share is 15%, while in Poland 56%. Total world coal production in 2016 amounted to 3.66 billion toe. The decline of world coal production in relation to 2015 has decreased by 6% and was mainly due to a decline in production in China. The largest share of coal in the world's primary consumables is South Africa (about 70%), followed by China (62%) and India (57%). In 2015, world electricity production amounted to 24,255 TWh, of which the share of energy generated from coal was 39% (9538 TWh). This was the lowest share of coal energy generated in 2010–2015. The share of electricity produced from coal in the European Union in 2015 was 26% (ie 826 TWh). In Poland, the share of solid fuels in electricity production in 2011 was 79%, including on hard coal – 47%, and on lignite – 32%. Since 2010, the share of solid fuels in electricity production has decreased by 7.4 percentage points. In Poland, wind energy is the most dynamically developing. The power industry is already producing about 11 TWh (data for 2015). Since 2010, the energy sector has recorded more than 5-fold growth. In 2010-2016, power plants and CHPs consumed 36.78 to 42.94 million tonnes of coal. As a result, the share of sales by domestic coal producers accounted for 81 to 93% (32.45–38.88 million tonnes). The shortage of native raw materials was supplemented by the supply of imported coal. In the years 2010–2016 the total import of coal to Poland varied from 5.61 to 12.72 million tonnes. In 2010–2014 Poland was a net importer of steam coal. The sale of imported steam coal to the power industry in 2012–2016 varied from 0.32 to 1.66 million tonnes. The share of sold imported coal purchased by the power industry in 2012–2016 was: (i) 4.6–17.5% of sales of generally imported coal; (ii) 0.9–3.7% of domestic sales to power generation and (iii) 0.8–4.3% of coal consumption by power plants and CHPs.
The aim of this article is to discuss the changes that have been observed on the market of qualified coal fuels (the so-called eco-pea coal) over the last few years. These changes are related to the markets of both the producers and the products they offer. Qualified coal fuels are produced from selected lots of high-calorific coal. They are characterized by strictly defined repeatable physico-chemical parameters (low sulphur content, ash content, and agglomerating capacity) and they are dedicated for use in modern, low-emission retort boilers. On the basis of multiannual observations, five groups of producers of qualified coal fuels have been identified, broken down by the origin of utilized coal. Initially, the production of eco-pea coal in Poland was limited to domestic coal mining companies only. However, in response to the growing demand for these fuels, smaller businesses (mostly dedicated to trading coal from major coal mining companies) have also engaged in production of these fuels. A part of them started producing eco-pea coal under licenses from large coal mining companies, and some of them created their own blends as well. [...]
PL
Celem artykułu jest omówienie zmian jakie zaobserwowano na przestrzeni ostatnich kilku lat na rynku kwalifikowanych paliw węglowych (tzw. ekogroszków). Zmiany te odnoszą się zarówno do rynku producentów, jak również oferowanych przez nich produktów. Kwalifikowane paliwa węglowe powstają z wyselekcjonowanych partii wysokokalorycznego węgla. Cechują się ściśle określonymi, powtarzalnymi parametrami fizykochemicznymi (niską zawartością: siarki, popiołu oraz zdolności spiekania) oraz dedykowane są nowoczesnym, niskoemisyjnym kotłom retortowym. Na podstawie wieloletnich obserwacji wyróżnionych zostało pięć grup producentów kwalifikowanych paliw węglowych, zróżnicowanych pod względem źródła pochodzenia węgla. Początkowo produkcja ekogroszków w Polsce ograniczała się tylko do rodzimych spółek węglowych. Jednakże w odpowiedzi na rosnące zapotrzebowanie na te paliwa, produkcją omawianych paliw zajęli się także mniejsi przedsiębiorcy (najczęściej zajmujący się handlem węglem głównych spółek węglowych). Część z nich zajęła się produkcją ekogroszków na licencji dużych spółek węglowych, a niektórzy z nich – także własnych mieszanek. [...]
Zagadnienia związane ze zmianami klimatu są obecnie jednym z najczęściej poruszanych tematów przez ekologów, ale także polityków i naukowców. Wzrost temperatury w ostatnich dekadach jest rzeczywiście wyższy niż poprzednio, w związku z czym istnieje obawa występowania niekorzystnych zmian klimatycznych prowadzących do pustynnienia gleb, częstszych klęsk żywiołowych, topnienia lodowców oraz podnoszenia się poziomu mórz i oceanów. Za te zjawiska według naukowców odpowiadają tzw. gazy cieplarniane, do których zalicza się między innymi CO2 . Dwutlenek węgla powstaje w przyrodzie w sposób naturalny, ale jest też wprowadzany do atmosfery przez człowieka poprzez spalanie paliw kopalnych. I właśnie na dążeniu do redukcji tego gazu skupiają się wysiłki wielu organizacji. Unia Europejska jest najbardziej zaangażowana w ustanawianiu ograniczeń emisyjnych. W artykule przedstawiono procentowy udział największych emitentów CO2 w UE oraz państwa, które w największym i w najmniejszym stopniu te ograniczenia wprowadziły w latach 2015/2014. Przedstawiono również ważniejsze inicjatywy o zasięgu globalnym, do których zaliczamy między innymi Szczyt ziemi w Rio de Janeiro, Protokół z Kioto, czy też szczyt klimatyczny w Paryżu COP21 z 2015 r. Pokazano również ważniejsze inicjatywy o zasięgu krajowym. Wszystkie działania zmierzają do zaostrzenia norm emisji, co z pewnością doprowadzi do jej zmniejszenia, niestety takie działania mogą doprowadzić też do ucieczki przemysłu z Europy i tym samym do pogorszenia sytuacji gospodarczej i społecznej w tym regionie. Polska jako kraj, w którym największy udział w wytwarzaniu energii elektrycznej ma węgiel, znalazła się w trudnej sytuacji. Ograniczanie emisji CO2 wiąże się z koniecznością zamykania starych nieefektywnych elektrowni i elektrociepłowni, a to generuje wysokie nakłady inwestycyjne. Odchodzenie od węgla wymusi też redukcję zatrudnienia w polskich kopalniach, co jest zjawiskiem niekorzystnym społecznie, zwłaszcza, że dotyczy jednego regionu, czyli Śląska.
EN
Issues related to climate change are now one of the most discussed topics by environmentalists, but also politicians and scientists. The temperature rise in recent decades is actually higher than before and therefore there is a fear of adverse climate change leading to desertification of soils, frequent natural disasters, melting glaciers and rising sea levels. Behind these phenomena by researchers in their so-called greenhouse gases, which include, among others CO2. Carbon dioxide occurs in a natural way, but it is also introduced into the atmosphere by humans through the burning of fossil fuels. It is on a quest to reduce this gas focus the efforts of many organizations. The European Union is the most involved in setting emission limits. The article presents the percentage share of the largest CO2 emitters in the EU and the countries which have the greatest and the least of these restrictions introduced in the years 2015–2014. It also presents important global initiatives, which include among others, the Earth Summit in Rio de Janeiro, the Kyoto Protocol, or the climate summit COP21 in Paris from 2015. Also shown are the major initiatives on a national scale. All activities are aimed at tightening the emission standards, which will lead to decrease it, but such actions could lead to a flight of industry from Europe and thus to a worsening economic and social situation in the region. Poland as a country in which the largest share in electricity generation is coal found itself in a difficult situation. Reducing CO2 emissions requires the closure of old inefficient power plants and generates high investment costs. Moving away from coal will force a reduction in employment in Polish mines, which is a socially negative phenomenon, especially as it relates to one region – the Upper Silesia.
Celem niniejszego artykułu jest oszacowanie kosztów środowiskowych dla średnich obiektów energetycznych spalających węgiel kamienny w Polsce. W związku z projektem nowych przepisów unijnych (the Medium Combustion Plant (MCP) Directive) zaistnieje konieczność dotrzymania krajowych pułapów emisji. By móc im sprostać, istniejące średnie obiekty energetycznego opalane węglem kamiennym spalania (kotły rusztowe) muszą liczyć się z potrzebą ich modernizacji lub odtworzenia w nowych technologiach. Rynek ciepłowniczy w Polsce ma charakter lokalny, spowodowany dużym rozdrobnieniem przedsiębiorstw ciepłowniczych. Najliczniej reprezentowaną grupą wśród wytwórców ciepła są przedsiębiorstwa o mocy do 50 MW a w nich obiekty wyposażone w kotły rusztowe. Ciepło oraz ciepła woda użytkowa w przedsiębiorstwach ciepłowniczych produkowana jest głównie w oparciu o węgiel kamienny. Jego przeciętny udział w strukturze wytwarzanie ciepła w latach 2008-2014 wynosi aż 74-77%. W artykule oszacowano koszty emisji gazów (SO2, NOx, CO, CO2) oraz pyłów i składowania odpadów stałych, wytworzonych w procesie spalania (w kotłach rusztowych). Wzięto pod uwagę ciepłownie z kotłami rusztowymi. Koszty te obliczono w zależności od zmian parametrów jakościowych węgla (Q, A, S) w przeliczeniu na tonę spalonego węgla o danej jakości. Poziom emisji pyłów oraz ilość tworzących się odpadów stałych zależą od dwóch parametrów: wartości opałowej i zawartości popiołu. W przeliczeniu kosztów na jedną tonę węgla ich wielkość zmienia się tylko w zależności od zawartości popiołu. Dla emisji CO, CO2 i NOx zmiany opłat uzależnione są tylko od wartości opałowej, a przypadku emisji SO2 wynikają zarówno ze zmian wartości opałowej, jak i zawartości siarki. Przedsiębiorstwa ciepłownicze w Polsce najczęściej spalają węgiel kamienny o parametrach jakościowych (wartość opałowa – Q, zawartość popiołu – A, zawartość siarki – S) zawierających się w zakresie: wartość opałowa rzędu 21-22 MJ/kg, 19-21% A i 0,6-0,9% S. Obliczona suma opłat środowiskowych dla zużycia 1 tony węgla tej klasy wyniosłaby 18-23 zł/tonę. Spalanie węgla o wspomnianych parametrach będzie się wiązać z koniecznością stosowania urządzeń odpylających o sprawności na poziomie 62-69%. Obecnie nowoczesne kotły rusztowe spełniają te wymagania, gdyż oferują sprawność odpylania na poziomie ok. 70%. W przypadku emisji SO2 tylko dla węgla o wartości opałowej rzędu 21-22 MJ/kg i zawartości siarki 0,6% S – nie będzie wymagana technologia odsiarczania. Natomiast przy spalaniu gorszych gatunków węgli będzie wymagane odsiarczanie o sprawności ok. 6-30%. Przedstawione szacunki dotyczą norm, które będą obowiązywać od początku 2016 r.
EN
The purpose of this article is to estimate the environmental costs for Polish heating plants with thermal power lower than 50 MW, using hard coal. The draft new EU legislation (the Medium Combustion Plant (MCP) Directive) have the need to meet the national emission limits. To address them, the existing heating plants with thermal power lower than 50 MW using hard coal (stoker-fired boilers) must reckon with the need to upgrade or restore them in the new technologies. The heat generation market in Poland is local, due to high fragmentation of heating companies. The most strongly represented group of producers of heat are heat generation plants with capacity lower than 50 MW. These heating plants are equipped mainly stoker-fired boilers. In Poland, the production of heat and hot water in heating plants is mainly based on hard coal. Its average share in the structure of heat generation in the period 2008-2014 is as high as 74-77%. The article estimated costs of emissions of: SO2, NOx, CO, CO2, particulate matter and costs of solid waste disposal, which are produced in the combustion process of hard coal. The calculations focused on heating plants with stoker-fired boilers. These costs were calculated according to changes in hard coal quality parameters (calorific value - Q, Ash content - A, Sulphur content S). These costs were calculated for one tone of hard coal burned for a particular quality. The companies involved in the Polish heating sector are usually using hard coal of quality parameters (Q/A/S) containing in the range of: 1-22 MJ/kg calorific value, 19-21%A and 0.6-0.9%S. Total fees for emissions of SOv, NO2, CO, CO2 and solid waste disposal of 1 t hard coal this class would be 18-23 PLN/t. The combustion of coal for these parameters will require the need for the use of dust collecting equipment with an efficiency of 62-69%. Today, modern stoker-fired boilers meet these demands because they offer efficiency of extraction of approx. 70%. Considering the SO2 emission only in the case of hard coal of Q parameters amounting to 21-22 MJ / kg and 0.6%S - not required for desulfurization technology. In the case of burning low-grade coal is required desulfurization efficiency of the order of 6-30%. These estimates relate to the standards that will apply from the beginning of 2016. The conducted calculations show that the cost of the economic use of the environment depending on the quality parameters of coal burning may increase the cost of coal burned by 9-11%.
Artykuł przedstawia zmiany, jakie zaszły w sprzedaży importowanego węgla na rynku polskim. Przeanalizowano import drogą kolejową (jego wolumen, jak również geograficzną strukturę kolejowych dostaw węgla według przejść granicznych) oraz morską (wolumen, a także możliwości importowe portów morskich). Ze względu na wprowadzenie w 2012 r. podatku akcyzowego na handel węglem i koksem przeznaczonym do celów opałowych, artykuł omawia również Pośredniczące Podmioty Węglowe. W połowie 2012 r. około 2,4 tys. firm, jako rodzaj działalności gospodarczej podało import i/lub nabycie wewnątrzunijne wyrobów węglowych. Na początku roku 2016 ich liczba zwiększyła się do około 3,8 tysięcy. Zaprezentowano także zmiany, jakie na przestrzeni lat zaszły w sieci dystrybucji oraz w ofercie importerów węgla. Początkowo węgiel oferowany był luzem, później doszła usługa jego konfekcjonowania. Ostatnio importerzy wprowadzili na rynek również własne paliwa kwalifikowane. Artykuł porusza także zagadnienie rozwoju transportu kolejowego i portów morskich.
EN
This paper presents the changes that have occurred in the sale of imported coal on the Polish market. Imports by rail (volume, geographical structure of railway coal supplies by border crossings) and by sea (volume, import capabilities seaports) were analyzed. Due to the introduction of excise tax in 2012, on trade of coal and coke intended for heating purposes, the paper also discusses the Coal Intermediate Entities. In the mid-2012 c.a. 2400 companies reported import and/or acquisition of intra-coal products as a field of economic activity. At the beginning of 2016 their number increased to c.a. 3800. This paper also presents the changes that over the years have occurred in the distribution network and in the offer of coal importers. Initially, coal was offered in bulk, then came its packaging service. Recently, importers have also introduced their own qualified coal fuels on the market. This paper also focuses on the issues of development of rail transport and seaports.
Celem artykułu było określenie perspektyw zapotrzebowania na węgiel kamienny przez sektor drobnych odbiorców z regionu północno-wschodniego (w skrócie region N-E). Do regionu N-E przyporządkowane zostały cztery województwa: mazowieckie, łódzkie, podlaskie i warmiń- sko-mazurskie. W latach 2005–2014 sektor drobnych odbiorców w regionie N-E łącznie zużył od 2,5 do 3,7 mln ton węgla kamiennego. Przeprowadzona analiza pozwoliła stwierdzić, że zużycie węgla kamiennego przez odbiorców w poszczególnych województwach regionu N-E przebiega w podobnym tempie, jak zużycie tego surowca dla całego kraju. Występują duże rozbieżności w wolumenie zużycia węgla pomiędzy poszczególnymi województwami: najwyższe jest w mazowieckim (1,2–1,8 mln ton w latach 2005–2014), najniższe – w podlaskim i warmińsko-mazurskim (ok. ¾ niższe niż w woj. mazowieckim). Chcąc określić perspektywy zapotrzebowania na węgiel kamienny wzięto pod uwagę nie tylko wielkość zużycia tego surowca, ale również jego dwóch największych konkurentów: gazu ziemnego i ciepła sieciowego. Wyznaczono także linie trendu zużycia węgla kamiennego, które sugerowałyby wzrost jego zużycia. Jednakże niewielkie roczne przyrosty wolumenu tego surowca w ostatnich pięciu latach, raczej na to nie wskazują. Mając także na uwadze stan zamożności gospodarstw domowych (relatywnie duży udział gospodarstw o dochodzie rozporządzalnym niższym niż średnia krajowa) można wnioskować, że w najbliższych kilku latach zużycie węgla kamiennego w regionie N-E utrzyma się na obecnym poziomie (ok. 3,3–3,7 mln ton).
EN
The aim of the article was to determine the perspectives of hard coal demand for the municipal and housing sector from the Poland N-E region. This region consists of four voivodships: the Mazowieckie Voivodship, the Łódzkie Voivodship, the Podlaskie Voivodship and the Warmińsko-Mazurskie Voivodship. In the years 2005–2014, the municipal and housing sector in the N-E region consumed between 2.5 and 3.7 million tons of hard coal in total. The analysis has shown that the consumption of hard coal by customers in different voivodship of the region runs at a similar rate as its consumption for the entire country. There are wide variations in the volume of coal consumption between provinces: the highest is in the Mazowieckie (1.2–1.8 million tons in 2005–2014), the lowest – in the Podlaskie and Warmińsko-Mazurskie (about ¾ lower than in the Mazowieckie Voivodship) . To determine the prospects of demand for hard coal the volume of the coal consumption, but also consumption of natural gas and district heating were taken into account. The trend lines of coal consumption, which would suggest an increase, were also established. However, small annual increases in the volume of gas in the last five years, rather it did not show this phenomenon. Taking the state of household wealth into account (a relatively large share of households with disposable income lower than the national average), it can be concluded that the consumption of hard coal in the N-E region will remain at the current levels in the next few years (around 3.3–3.7 million tons).
Due to the important role of hard coal in the Polish residential sector, the article traced the changes that have occurred in the use of this fuel in the European Union and in Poland in the years 1990–2014. Throughout the European Union, hard coal has an important place in the structure of primary energy consumption. In the years 1990–2014, primary energy consumption in the European Union (calculated for all 28 Member States) has changed between 1507 and 1722 million toe. Between 2014 and 1990, there was a decrease of primary energy consumption, and the average rate of decline amounted to –0.2%. According to Council Directive 2013/12/EU, by the year 2020 energy consumption throughout the EU is expected to be no more than 1483 Mtoe of primary energy, and already in 2014 total primary energy consumption in the EU28 was higher than assumed by this target by only about 24 million toe (2%). Actions taken to protect the climate result in reducing the consumption of hard coal in the European Union. Between 1990 and 2014, the consumption of hard coal decreased by 41% (a decrease of 126 million toe), and the average rate of decline in consumption of this fuel amounted to –2.1%. Throughout the EU, households are not as significant a consumer of hard coal, as in Poland. Although EU28’s coal consumption in this sector in the years 1990 to 2014 varied between 6.5–15.8 million toe, its share in the overall consumption of this fuel usually maintained at around 3–5%. The changing fuel mix, closing of mines or gradual extinction of coal mining, environmental policy of the individual countries meant that coal has lost its position in some of them. [...]
PL
Z uwagi na istotną rolę, jaką w polskim sektorze mieszkaniowym odgrywa węgiel kamienny, w artykule prześledzono zmiany, jakie nastąpiły w zużyciu tego paliwa w Unii Europejskiej oraz w Polsce w latach 1990–2014. Na całym obszarze Unii Europejskiej węgiel kamienny zajmuje istotne miejsce w strukturze zużycia energii pierwotnej. W latach 1990–2014 zużycie energii pierwotnej w UE (w przeliczeniu dla wszystkich 28 państw członkowskich) zmieniało się od 1507 do 1722 mln toe. Pomiędzy rokiem 2014 a 1990 zanotowano spadek zużycia energii pierwotnej, a średnioroczne tempo spadku wyniosło –0,2%. Według Council Directive 2013/12/EU do roku 2020 zużycie energii w całej Unii ma wynieść nie więcej niż 1483 mln toe energii pierwotnej, a już w 2014 r. łączne zużycie energii pierwotnej w UE28 było wyższe od założonego celu jedynie o 24 mln toe (2%). Podejmowane działania na rzecz ochrony klimatu skutkują zmniejszeniem zużycia węgla kamiennego w Unii Europejskiej. Pomiędzy rokiem 1990 a 2014 zużycie węgla kamiennego zmniejszyło się o 41% (spadek o 126 mln toe), a średnioroczne tempo spadku zużycia tego paliwa wyniosło –2,1%. Na całym obszarze Wspólnoty gospodarstwa domowe nie są tak istotnym konsumentem węgla kamiennego, jak w Polsce. Chociaż w UE28 zużycie węgla w tym sektorze w latach 1990–2014 zmieniało się w zakresie 6,5–15,8 mln toe, to jego udział w ogólnym zużyciu tego paliwa najczęściej utrzymywał się na poziomie około 3–5%. Zmieniający się miks paliwowy, zamykanie kopalń lub stopniowe wygaszanie górnictwa węgla kamiennego oraz polityka środowiskowa danego państwa spowodowały, że w części państw unijnych surowiec ten stracił swoją pozycję. [...]
W artykule przeprowadzono obliczenia symulacyjne pozwalające oszacować ceny węgla loco kopalnia Śląsk (katowice) w zł/Gj - konkurencyjne wobec założonych poziomów cen węgla u odbiorców niemieckich. Obliczenia przeprowadzono dla dwóch klas miałów energetycznych 22 i 25 Mj/kg. Określono ceny konkurencyjne węgla loco producent dla ośmiu wybranych elektrowni niemieckich reprezentujących główne regiony produkcji energii elektrycznej z węgla. W 2014 roku Niemcy przy własnym wydobyciu 7,6 mln ton zaimportowali 36 mln ton węgla. ta sytuacja stwarza możliwość ulokowania węgla z Polski na rynku niemieckim. kluczowym elementem tego problemu są stawki za przewóz węgla i w związku tym konieczność wynegocjowana dużych rabatów w transporcie koleją. Głównym konkurentem dla węgla krajowego w eksporcie do Niemiec jest Rosja, Kolumbia i RPA. Obecny poziom cen na rynkach międzynarodowych 55 USD/tonę pozwala na eksport węgla tylko producentom mającym wyjątkowo niskie koszty jego wydobycia.
EN
The paper presents simulations that allow for the assessment of the prices of coal (ex-mine basis) in Silesia (Katowice) in PLN/GJ - competitive with respect to the assumed levels of coal prices for German consumers. Calculations were carried out for the two grades of fine coals: 22 and 25 MJ/kg. The competitive ex-mine coal prices for eight selected German power plants (representing the main regions of production of electricity from coal) were determined. In 2014, Germany produced 7.6 million tons of their own in addition to importing 36 million tons of coal. This situation creates the possibility of exporting hard coal from Silesia to the German market. The key element of this issue is the rate at which coal can be shipped and therefore the need of large discounts in rail transport. The main competitors for Polish coal exported to Germany are Russia, Colombia, and South Africa. The current level of international coal prices at $55/ton allow the export of coal by producers having only very low costs of exploitation.
An important factor that will affect the price of electricity will be the cost associated with CO2 emissions. The costs of CO2 emission allowances will increase their share in the total cost of electricity production. Poland is a country in which the share of fossil fuels in electricity generation mix is very high. It dropped to the level of 83% in 2013. The largest share of coal (data for 2012) in the electricity generation mix in the world was in South Africa (94%). The global CO2 emissions continues to grow, even though there has been economic slowdown over the last 5 years. In 2012, the CO2 emissions reached a level of 34.5 billion tones. Since 1990, CO2 emissions increased by 52%. Until 2000, the growth was at the level of 1.1% per year, and since 2000 it was 2.6% per year. Coal combustion is responsible for 43% of CO2 emissions. In order to investigate the impact of the price of CO2 emission allowances on the cost of electricity generation, an analysis of the theoretical margin that generators may achieve (CDS spread) was carried out. This paper presents results of simulations that show how the theoretical margin (CDS) changes under assumed coal prices and electricity prices based on the assumed prices of CO2 emission allowances. The results also show what could be the maximum price of coal under given market conditions.
W artykule omówiono trendy zmian popytu i podaży węgla kamiennego na rynku drobnych odbiorców. W latach 1999–2013 roczne zużycie węgla kamiennego w tym sektorze zmieniało się w przedziale od 9 do 14 mln ton. Użytkownicy z tego sektora wykorzystują go przede wszystkim w celach grzewczych. Węgiel najczęściej spalany jest w kotłach jedno- i dwufunkcyjnych, przy czym w ostatnich latach wzrasta udział tych ostatnich. Odbiorcy indywidualni mogą zaopatrywać się zarówno w węgiel rodzimej produkcji, jak również pochodzący z importu. Przed przystąpieniem Polski do UE import był niewielki. W porównaniu do skali sprzedaży krajowej węgla energetycznego najczęściej było to 1–2%. Po roku 2004 ranga importu zaczęła wzrastać, a w latach 2008–2011 import stanowił już 11–21%. W artykule omówiono również przebieg zmienności ceny detalicznej węgla kamiennego zakupionego przez gospodarstwo domowe. Pomiędzy rokiem 1999 a 2013 wzrosła ona o 129% i wyniosła 802 zł/tonę. Do roku 2004 średnie miesięczne wydatki ponoszone na opał wynosiły 11–14 złotych na osobę w gospodarstwie domowym, a po 2010 r. przekroczyły 30 zł. W latach 1999–2013 udział kosztów zakupu opału stanowił od 1,8 do 3,3% łącznych miesięcznych wydatków poniesionych na jedną osobę w gospodarstwie domowym.
XX
The article discusses the trends in changes in demand and supply of coal in the municipal and housing sector. In the years 1999–2013 the annual consumption of coal in this sector varied in the range of 9 to 14 million tons. Users of this sector utilize this fuel primarily for heating purposes. Most coal is burned in single- and dual-function boilers. In recent years there was a noted increased share of bifunctional boilers. Individual customers can buy both types of fuel – domestic coal as well as coal coming from imports. Before the Polish ascension to the European Union, imports were small. In comparison to the scale of the domestic sales of steam coal, it was most often 1–2%. After 2004 the importance of imports began to increase, and in 2008–2011 it was already 11–21%. The article also discusses the variation of the retail price of coal purchased by a household. Between 1999 and 2013 it increased by 129% and amounted to 802 PLN/t. By 2004, the monthly expenditure on fuels amounted to PLN 11–14 per capita per household, and after 2010 – more than 30 PLN. In the years 1999–2013 the monthly share of fuel purchase costs accounted for 1.8 to 3.3% of the total expenditure incurred by one person in a household.
W Polsce największym konsumentem węgla kamiennego jest energetyka zawodowa. W latach 2007–2013 jej udział w zużyciu ogółem wyniósł 53–56% (40,4–47,5 mln ton). Ze względu na duże zapotrzebowanie ze strony tego sektora do przewozu węgla najczęściej wykorzystywanym rodzajem transportu jest kolej. W artykule skupiono się na oszacowaniu kosztów dostawy węgla do elektrowni. Dla wybranych poziomów cen zużytego węgla w elektrowni (od 8,0 do 12,5 zł/GJ), oszacowano udział kosztów jego dostaw, dla kilku poziomów odległości transportowych (od 20 do 400 km). Stawki transportowe zaczerpnięto z taryfy PKP Cargo obowiązującej w 2014 roku. Ceny węgla oraz koszty jego transportu obliczono dla dwóch przykładowych kaloryczności: 21 i 23 MJ/kg (ok. 5000 i 5500 kcal/kg). Wyniki obliczeń zaprezentowano w dwuwymiarowych tabelach. Na przykład, przy cenie węgla kamiennego zużytego przez elektrownię rzędu 11 zł/GJ oraz zastosowaniu 60% rabatu przewozowego, udział kosztów transportu dla węgla o kaloryczności 21 MJ/kg (ok. 5000 kcal/kg) zmienia się od 7 do 20%, a dla kaloryczności 23 MJ/kg (ok. 5500 kcal/kg) – od 7 do 18%
EN
In Poland, the largest consumer of hard coal is the energy sector. In the years 2007–2013 its share of the total domestic consumption amounted to 53–56% (40,4–47,5 million tons). Because of the high demand from the transport sector, the most frequently hard coal is transported by rail. The article focuses on assessing the cost of coal supply to power plants. For the selected price levels hard coal consumed by the power plant (from 8.0 to 12.5 zł/GJ) was estimated share of the costs of its deliveries for several levels of transport distances (from 20 to 400 km). Transport rates taken from PKP Cargo tariffs in force in 2014. Prices of coal and the transport costs are calculated for two exemplary calorific value: 21 and 23 MJ/kg (approx. 5,000 and 5,500 kcal/kg). The results of calculation are presented in two-dimensional tables. For example, when the price of hard coal consumed by the power plant is 11 zł/GJ, and the use of 60% discount of the transport, the share of coal transport a calorific value of 21 MJ/kg (approx. 5,000 kcal/kg) varies from 7 to 20% and the calorific value 23 MJ/kg (approx. 5,500 kcal/kg) – from 7 to 18%.
Artykuł przestawia analizę importu węgla do Polski. Przedstawiono w nim jego krótką historię w latach 1960-2013. Omówiono główne kierunki dostaw węgla na rynek krajowy, jak również drogi jego transportu. W przypadku importu kolejowego przedstawiono geograficzną strukturę kolejowych dostaw węgla według przejść granicznych, a importu morskiego - możliwości importowe portów morskich. Porównano również oferty cenowe węgla (sortymenty: miałowe oraz grube) skierowane do odbiorców indywidualnych w latach 2009-2013.
EN
This paper presents the analysis of import of hard coal to Poland along with its background in the period of 1960-2013. The main directions of coal supplies to the domestic market were described and the means of transport presented. The paper shows a geographic structure of railroad supplies in case of railroad import, according to frontier posts, and the capabilities of sea harbours in case of sea import. The price offers of coal (dust and thick) directed to individual buyers were compared taking the period 2009-2013.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.