Agresja Rosji wobec Ukrainy ponownie uzmysławia znaczenie i rolę surowców mineralnych w polityce państw. Działania militarne zakłócające łańcuch dostaw surowców wywołują globalny niepokój na rynkach surowcowych, powodując wzrost cen surowców na międzynarodowych rynkach i wahania kursów walut rozliczeniowych w obrocie surowcowym. Bieżąca sytuacja polityczno-militarna wymusza prowadzenie dodatkowych analiz o własnej bazie surowcowej znajdującej się w złożach krajowych i możliwościach jej wykorzystania. Choćby częściowe zamykanie się rynku surowcowego prowadzi do konieczności uwzględnienia działania gospodarki krajowej w warunkach ograniczonej autarkii surowcowej. Tym większą rolę należy obecnie przypisać prowadzeniu właściwej polityki surowcowej państwa. W ramach tej polityki należy rozważyć wprowadzenie instrumentów zachęcających inwestorów do podejmowania działań na rzecz zagospodarowania udokumentowanych zasobów złóż kopalin.
EN
Russia’s aggression against Ukraine once again highlights the importance and role of mineral resources in the politics of countries. Military actions disrupting the raw material supply chain are causing global unrest in mineral commodities markets, driving up commodity prices in international markets and causing fluctuations in raw material settlement currencies. The current political and military situation makes it necessary to conduct additional analyses of mineral reserves in domestic deposits and the possibility of their exploitation. Even partial closure of the raw materials market leads to the necessity to take into account the operation of the national economy under conditions of limited raw materials autarky. This makes it all the more important to pursue an appropriate national minerals policy. As part of this policy, the introduction of instruments encouraging investors to undertake activities aimed at the development of documented mineral deposits should be considered
The importance and the role of minerals in the economy of a country or the world is highlighted by the use of the following terms: scarce mineral, critical mineral, and strategic mineral. The validity of the raw material in the economic processes and knowledge about the sources of its acquisition, access barriers, and the shaping of prices on the domestic and international market allow the development of an action strategy. The strategy must take into account the objective of the action, time horizon, the kind of the instruments that need to be used, and the scope of international cooperation. The importance of the raw material for the country is not only the volume of turnover and volume of production obtained thanks to its application. There are also historical, cultural and social reasons for its importance. The authors present arguments for another meaning of the term – mineral criticality. They also point out the linguistic differences between the term “criticality” in Polish and English. They propose to consider water, medicinal raw materials, some rock resources and amber as critical raw materials for various reasons.
PL
Znaczenie i rola kopalin w gospodarce kraju lub świata przejawia się w stosowaniu różnych określeń: „kopalina deficytowa”, „kopalina krytyczna”, „kopalina strategiczna”. Ważność surowca w procesach gospodarczych oraz wiedza o źródłach jego pozyskiwania, barierach dostępu, kształtowaniu się cen na rynku krajowym i zagranicznym pozwalają na opracowanie strategii działania państwa. Strategia musi uwzględniać cel działania, horyzont czasowy, rodzaj instrumentów koniecznych do wprowadzenia i stosowania oraz zakres współpracy międzynarodowej. Znaczenie surowca dla kraju wynika nie tylko z wielkości obrotów surowcem i wielkość produkcji uzyskanej dzięki jego wykorzystaniu. Określa to również jego znaczenie ze względów historycznych, kulturowych i społecznych. Autorzy przedstawiają argumenty przemawiające za innym znaczeniem terminu „krytyczność surowców mineralnych”. Wskazują również na różnice językowe pomiędzy znaczeniem terminu „krytyczność” w języku polskim i angielskim. Proponują, aby za surowce krytyczne z różnych względów uznać wodę, surowce lecznicze, niektóre surowce skalne czy bursztyn.
The main task of research was a quantitative and qualitative identification of rare earth elements within various Mesozoic sediments in the surroundings of the Holy Cross Mountains. Over 100 samples from archive boreholes, outcrops and mining waste were analysed using modern methods, like portable XRF, geochemical analysis (ICP-MS), electron microprobe and SEM. Results show enrichments of REE concentrations in sedimentary rock samples from the Niektań PIG-1 borehole (LREE up to 0.95%), Miedary outcrop (LREY up to 0.4%) and Lower Cretaceous phosphorites from mining waste in Chałupki and Annopol (LREE ~0.2%). Further investigation is strongly recommended in order to explain the distribution of REE in the study areas.
Changesin the demographic structure of the society and the development of civilisation diseases result in an increased interest in health-resort and spa and wellness services in Poland. Balneological raw materials will fill an important role in maintaining and improving the quality of life. The increase in demand for health-resort and disturbing reports on the possible collapse of the current pension system will probably force necessity of extending the retirement age. Undoubtedly, balneological raw materials will be crucial for efficient functioning of the society by providing broader health care prolonging physical fitness of the population. The awareness of occurring and coming changes makes the authors discuss the significance of the role of mineral resources in terms of not only innovation, defence and safety but also socio-cultural and civilisation.
Studies on Baltic nodules have been undertaken since the1920s. In the 1970sand 1980s, the Polish Geological Institute - National Research Institute conducted researches on the bottom sediments of the Baltic Sea, which allowed identifying the regions of occurrence of Fe-Mn nodules in the southern part of the Baltic Sea (Mojski, 1989-1994). Nodules from the Polish Baltic Sea Zone are the least studied element of the marine environment. So far, there is a lack of information on environmental-geological conditions of formation and occurrence of nodules, their metal resources and deposit potential. The Fe-Mn nodules may be a valuable source of information on the contamination of the Baltic Sea water and bottom sediments. In cooperation between the Institute of Oceanography of the University ofGdañsk and the Polish Geological Institute-NRI, two research cruises were carried out in August and September 2020 on a 5 X 5 km testing ground in the Gotland-Gdańsk Threshold region. The seabed surface was profiled using multibeam echo sounders and a side-scan sonar. A hundred samples of Fe-Mn nodules, 25 samples of surface sediments associated with the nodules, and25 samples of clay rocks underlain by marine sediments were collected. The extensive documentary material will enable, for the first time, to estimate the nodule resources and determine the regularity of their occurrence.
For 60 years, the Polish Geological Institute as a geological survey has been preparing special studies on prospective mineral resources. During this time the title, form, content, model of presented data have been changed. Currently, the study is edited as “Balance of Prospective Mineral Resources of Poland”. The knowledge about mineral resources has a fundamental importance for the national mineral security and rational decisions concerning the country’s economic strategy. The authors present the evolution of methodology, scope and significance of the “Balance...”. The last edition of “Balance...” in 2020 is a comprehensive scientific monograph (citing over 1700 published and unpublished sources) containing information about over 50 major minerals, as well as marine minerals from Baltic Sea.
In Poland, the mineral sector generates 110–130 million tons of wastes annually (in the last 20 years), and metal ore mining alone was responsible for 31.2 million tons of wastes in 2017. The slags deposited at the Polkowice were investigated. This waste may be a potential source of many valuable metals (Zn, Pb, Cu, Sb, Sn, Se). The tailings dump in Polkowice contains approximately 80,000 tons of slag. The material contains primary phases formed by pyrometallurgical processes and secondary phases, which are the result of transformation of primary components. The primary phases are represented by sulfides: sphalerite [ZnS]; wurtzite [(Zn,Fe)S]; pyrite [FeS2]; sulfates: beaverite-(Zn) [Pb(Fe3+2Zn)(SO4)2(OH)6]; palmierite [(K,Na)2Pb(SO4)2]; oxides and hydroxides: goethite [Fe3+O(OH)]; wüestite [FeO]; hematite [Fe2O3]; magnetite [Fe2+Fe3+2O4]; chromian spinel [Fe2+Cr3+2O4]; silicates: petedunnite [Ca(Zn,Mn2+,Mg,Fe2+)Si2O6]; quartz [SiO2]; and microcline [KAlSi3O8]. Additionally, SEM -BSE observations revealed that oxidized native metals (Cu, Pb,As) and metal alloys and semi-metals appear. The slag consists mainly of SiO2 (13.70–20.60 wt%), Fe2O3 (24.90–39.62 wt%) and subordinately of CaO (2.71–6.94 wt%) and MgO (1.34–4.68 wt%). High contents are formed by Zn (9.42–17.38 wt%), Pb (5.13–13.74 wt%) and Cu (1.29–2.88 wt%). The slag contains trace elements Mo (487.4–980.1 ppm), Ni (245.3–530.7 ppm), Sn (2380.0–4441.5 ppm), Sb (2462.8–4446.0 ppm), Se (168.0–293.0 ppm). High concentrations are formed by toxic elements, such as e.g. As (13 100–22 600 ppm) and Cd (190.5–893.1 ppm). It is estimated that the tailings dump has accumulated about 80,000 t of slag, which may contain about 10,000 t of Zn, about 6,700 t of Pb, and 1,500 t of Cu.
PL
Sektor mineralny wytwarza w Polsce około 110–130 mln odpadów rocznie (w ostatnich 20 latach), a górnictwo metali odpowiedzialne jest za wyprodukowanie 31,2 mln t odpadów w 2017 r. Odpady hutnicze powstałe w KGHM zawierają istotne ilości metali (Zn, Pb, Cu, Cr). Przedmiotem badań były hutnicze odpady pomiedziowe z hałdy w Polkowicach. Odpady te mogą być potencjalnym źródłem kilku metali (Zn, Pb, Cu, Sb, Sn, Se). Hałda w Polkowicach zawiera około 80 000 ton żużli pohutniczych. Badany materiał mieści fazy pierwotne powstałe w pirometalurgicznym procesie i fazy wtórne, które są rezultatem przemian faz pierwotnych. Fazy pierwotne reprezentowane są przez siarczki: sfaleryt [ZnS]; wurcyt [(Zn,Fe)S]; piryt [FeS2]; siarczany: beaveryt-(Zn)[Pb(Fe3+2Zn) (SO4)2(OH)6]; palmieryt [(K,Na)2Pb(SO4)2]; tlenki i wodorotlenki: goethyt [Fe3+O(OH)]; wüstyt [FeO]; hematyt [Fe2O3]; magnetyt [Fe2+Fe3+2O4]; spinel chromowy [Fe2+Cr3+2O4]; krzemiany: petedunnit [Ca(Zn,Mn2+,Mg,Fe2+)Si2O6]; kwarc [SiO2]; i mikroklin [KAlSi3O8]. Ponadto obserwacje SEM -BSE ujawniły obecność utlenionych metali rodzimych (Cu, Pb, As), stopów metali i półmetali. Żużle zawierają głównie SiO2 (13,70–20,60% w ag.), Fe2O3 (24,90–39,62% wag.) i pobocznie CaO (2,71–6,94% wag.), MgO (1,34–4,68% wag.). Wysoka jest zawartość Zn (9,42–17,38% wag.), Pb (5,13–13,74% wag.) i Cu (1,29–2,88% wag.). Ponadto żużel zawiera pierwiastki śladowe Mo (487,4–980,1 ppm), Ni (245,3–530,7 ppm), Sn (2380,0–4441,5 ppm), Sb (2462,8–4446,0 ppm), Se (168,0–293,0 ppm). Zawartość pierwiastków toksycznych jest wysoka: As (13 100–22 600 ppm), Cd (190,5–893,1 ppm). Oszacowano, że hałda żużla o masie 80 000 t może zawierać około 10 000 t cynku, około 6700 t ołowiu i około 1500 t miedzi.
The role of the Polish Geological Institute (PGI) from the beginning of its activity was to research mineral deposits necessary for the economic development of the country. During the interwar period, iron ore in the Holy Cross Mountains, phosphorites in the Annopol area, and hard coal of the present-day Lublin Coal Basin were discovered, and the presence of gravimetric anomalies in areas of later documented salt deposits was found by geophysical methods. The dynamic development of geological research after World War II led to great discoveries of copper ore, native sulfur, iron, brown coal and many other mineral deposits necessary for the development of the country. After the political and economic changes that took place in 1989, PGI's activities focused on maintaining databases on mineral resources, conducting work related to the identification of prognostic and prospective areas for the occurrence of deposits of mineral raw materials and the protection of deposits. These tasks will also be important in the future, but it is necessary to undertake extensive exploration work on mineral resources necessary for the raw material security of the country also outside of Poland, and to provide expert services in this area for business entities wishing to invest in the industry in the mining and raw materials sector in other countries.
The PGI-NRI conducts geological research on the documentation of occurrence of REE deposits in Poland. The deposit potential may be related to the formation of Lower Cretaceous phosphorites from the NE margin of the Holy Cross Mountains. Two phosphorite deposits were exploited in this region in the past: Chałupki (1936-1959) and Annopol (1952-1970). From the Chałupki old mine dump, 34 samples of fine-grained sand were collected. The pseudonodules were extracted from this sand. The sand from the dump is composed of quartz, francolite (carbonate-rich fluorapatite) Ca5(PO4,CO3)3F, illite and a small amount of feldspar, calcite and heavy minerals. The heavy fraction is composed of zircon, monazite and rutile. Sand has a low content of REE ranging from 47.56 to 185.26ppm. The phosphorite pseudonodules underwent a detailed mineralogical and chemical analysis. They are composed of francolite, quartz, illite, glauconite, feldspar and minor heavy minerals: zircon and monazite. For the first time, the whole spectrum of REE was analysed in pseudonodules. The I.REE content in the nodules ranges from 177.37 to 354.18ppm. This level of REE indicates a serious need for further exploration and research of phosphorite pseudonodules within the whole Lower Cretaceous phosphorite series and moreover, also in the Eocene phosphorite formation in the Lublin region.
During the geological prospecting works conducted in 2013 on Bangka Island (Indonesia), high monazite content was identified in the wastes produced during processing of cassiterite deposits. Monazite, among 250 known minerals containing REE, is one of the most important minerals as primary source of REE. The monazite content in this waste is up to 90.60%. The phase composition of the investigated tailing proves that the sources of minerals accompanying the placer sediments tin mineralization are granitoids. The tailing is composed of numerous ore minerals, including monazite, xenotime, zircon, cassiterite, malayaite, struverite, aeschynite-(Y), ilmenite, rutile, pseudorutile and anatase. Monazite grains belong to the group of cerium monazite. Its grains are characterized by high content of Ce2O3 27.12–33.50 w t.%, La2O3 up to 15.46 w t.%, Nd2O3 up to 12.87%. The total REE2O3 + Y content ranges from 58.18 to 65.90 wt.%. Monazite grains observations (SEM-BSE) revealed the presence of porous zones filled with fine phases of minerals with U and Th content. The radiation intensity of 232Th is ATh = 340 ± 10 Bq and 238AU = 114 ± 2 Bq. High content of monazite and other REE minerals indicates that tailing is a very rich, potential source of REEs, although the presence of radioactive elements at the moment is a technological obstacle in their processing and use. The utilization of monazite bearing waste in the Indonesian Islands can be an important factor for development and economic activation of this region and an example of the good practice of circular economy rules.
PL
W trakcie geologicznych prac prospekcyjnych prowadzonych w 2013 roku na indonezyjskiej wyspie Bangka stwierdzono wysokie zawartości monacytu w odpadach powstałych po przeróbce osadów kasyterytonośnych. Monacyt jest jednym z najważniejszych pierwotnych źródeł REE wśród 250 znanych minerałów zawierających REE. Zawartość monacytu w badanym odpadzie wynosi do 90,60%. Skład fazowy badanych odpadów wskazuje, że źródłem minerałów towarzyszących w cynonośnych złożach okruchowych były granitoidy. W składzie odpadu przeróbczego, metodą XRD zidentyfikowano obecność licznych minerałów złożowych, wśród nich: monacyt, ksenotym, cyrkon, kasyteryt, malayait, strüveryt, aeschynit-(Y), ilmenit, rutyl, pseudorutyl i anataz. Badania składu chemicznego ziaren monacytu z użyciem EPMA ujawniły, że należy on do grupy monacytu cerowego. Jego ziarna cechują się wysoką zawartością Ce2O3 27,12–33,50% wt., La2O3 do 15,46% wt., Nd2O3 do 12,87%. Całkowita zawartość REE2O3 + Y mieści się w zakresie od 58,18 do 65,90% wt. Obserwacje ziaren monacytu (BSE) ujawniły w nich obecność stref porowatych wypełnionych drobnymi fazami minerałów z udziałem U oraz Th. Aktywność promieniotwórcza 232Th wynosi ATh = 340 ± 10 Bq, a 238U = 114 ± 2 Bq. Wysoka zawartość monacytu oraz innych minerałów nośników REE wskazuje, że odpad przeróbczy stanowi bardzo bogate, potencjalne źródło pierwiastków ziem rzadkich, choć zawartość pierwiastków promieniotwórczych stanowi obecnie przeszkodę technologiczną w ich przetwarzaniu i wykorzystaniu. Wykorzystanie monacytonośnych odpadów z wysp Indonezji może być ważnym czynnikiem rozwoju i aktywizacji gospodarczej tego regionu oraz przykładem dobrej praktyki stosowania zasad gospodarki o obiegu zamkniętym.
In 2009, on the initiative of PT Halmahera Perkasa the “Jayapura” exploration project was carried out in Indonesia. As part of this project, exploration of the sea bottom in the northern coast of New Guinea was carried out over a distance of ~45 km. The suction dredge collected 59 samples of loose sediments from the shelf bottom surface of the Carolinian Sea (to a depth of 60 m below the sea-floor). The extracted samples are usually poorly and moderately sorted sands (5 samples), medium-grained sands (21 samples), and fine-grained sands (33 samples). The sand composition shows, among others, a wide spectrum of heavy minerals of ultra-mafic (Cr-garnet, chromium spinel, Mg-olivine) and metamorphic (epidote, clinochlore, amphibole, titanite) origin. The content of heavy minerals in the sediments is up to 54.77 wt.%. It was found that the source of heavy fraction in the eastern and western parts of the coast is the rock of the ophiolite series building the Cyclops Mountains Massif. The mineral composition of sediments from the central coastal zone corresponds to the types of rocks building the metamorphic core of the Cyclops Mountains (amphibolite, gneisses, andesite). Three mineral-geochemical subprovinces were determined on the basis of analyses of heavy mineral decomposition and chemical analyses of sediments. Shelf sediment from the eastern part of the coast is characterized by an increased content of strategic metals (Ni up to 3560, W up to 3130 and Co up to 142 ppm). In the central zone, the V content increases up to 244 ppm and the Ag content up to 5 ppm. In the shelf sediments there is a strong depletion in the REE.
The Polish Geological and Mining Law (The Act) determines two types of mineral deposit ownership: State Treasury Ownership (STO) and Land Ownership (LO). The Act introduces the term - mining usufruct (term adequate to mining lease) that concerns extracting of STO or geological activity in rock mass belonging to the State. The Minister of Environment, on behalf of the State and with the exclusion of other persons, can benefit from the subject of mining properties or dispose of its right to STO exclusively by establishing mining usufruct. The establishment of mining usufruct shall take place in the form of a written agreement between the State and entrepreneur and requires paying predetermined remuneration to the State. The authors conclude that the Act contains imprecise regulations concerning the lower limit of land property. This causes numerous difficulties in recognizing which parts of land property belong to the State Treasury and which belong to the land owner. The authors suggest that it is necessary to differentiate in the Act two kinds of activities and consequently two types of agreement between the State and entrepreneur: 1) agreement of mining usufruct, and 2) agreement of geological usufruct.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.