Among the types of different particulates, silica is a standout as one of the the cheapest and low-density particulates accessible in substantial amounts. The present study has been centered around the synthesis and study of aluminum matrix composite strengthened with nano-sized SiO2 particles of various weight percentage by means of the stir casting technique. The EDX emphasized the presence of various elements and augmented the in situ reaction. The tensile strength and wear studies were also carried out. The reinforcement materials percentage variation was one of the important factors for the present studies. The Aluminum Alloy 5083 and 2024, which are magnesium and copper-based alloys, had a significant effect on the material characterization.
A methodology was exhibited to create the experimental model for assessing the Ultimate Tensile Strength of AA 5083-O aluminum compound which is broadly utilized as a part of boat building industry by Friction Stir Welding (FSW). FSW process parameters, such as: tool rotational speed, welding speed, and axial force were optimized for better results. FSW was completed considering three-component 3-level Box Behnekn Design. Response surface Methodology (RSM) was implemented to obtain the relationship between the FSW process parameters and ultimate Tensile Strength. Analysis of Variance (ANOVA) procedure was utilized to check the aptness of the created model. The FSW process parameters were additionally streamlined utilizing Response Surface Methodology (RSM) to augment tensile strength. The joint welded at a rotational speed of 1100 rpm, a welding speed of 75 mm/min and a pivotal energy of 2.5 t displays higher tensile strength compared with different joints in comparison with other joints.
This paper compares, the mechanical properties of welded joints 6061 T6 and 5083 O aluminium alloys obtained using friction stir welding (FSW) at four rotation speeds namely 450,560,710 and 900 rpm and that by conventional fusion welding. FSW welds were carried out on a milling machine. The performance of FSW and Fusion welded joints were identified using tensile test, hardness test and microstructure. The properties of FSW and fusion welded processes were also compared with each other to understand the advantages and disadvantages of these processes for welding applications for Al alloys. It was seen that the tensile strength obtained with FSW was higher as compared to conventional fusion welding process. The width of the heat affected zone of FSW was narrower than Fusion welded joints. The results showed that FSW improved the mechanical properties of welded joints.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Purpose: In this paper, the mechanical properties of welded joints of 6061 T6 and 5083 O aluminium alloy obtained using friction stir welding (FSW) with four rotation speed (450, 560, 710 and 900 rpm) and conventional fusion welding are studied. Design/methodology/approach: FSW welds were carried out on a milling machine. The performance of FSW and Fusion welded joints were identified using tensile, hardness and microstructure. Findings: Better tensile strength was obtained with FSW welded joints. The width of the heat affected zone of FSW was narrower than Fusion welded joints welded joints Research limitations/implications: Properties FSW and Fusion Welded processes were also compared with each other to understand the advantages and disadvantages of the processes for welding applications of the Al alloy. Originality/value: The results show that FSW improves the mechanical properties of welded joints.
5
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The paper is concerned with stability analysis for a class of impulsive Hopfield neural networks with Markovian jumping parameters and time-varying delays. The jumping parameters considered here are generated from a continuous-time discrete-state homogenous Markov process. By employing a Lyapunov functional approach, new delay-dependent stochastic stability criteria are obtained in terms of linear matrix inequalities (LMIs). The proposed criteria can be easily checked by using some standard numerical packages such as theMatlab LMI Toolbox. A numerical example is provided to show that the proposed results significantly improve the allowable upper bounds of delays over some results existing in the literature.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.