This article discusses selected aspects of modelling blood flow in the arteries. The method of reproducing the variable-intime geometry of coronary arteries is given based on a sequence of medical images of different resolutions. Within the defined shapes of the arteries, a technique of generation of numerical meshes of the same topology is described. The boundary conditions and non-Newtonian rheological models used in blood flow are discussed, as well as the description of blood as a multiphase medium. The work also includes a discussion of tests on the phantom of the carotid artery for the accuracy of measurements made using ultrasonography.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this work, a three-dimensional simplified computational model was built to simulate the passive thermo-physiological response of part of a newborn’s head for neonate’s selective brain cooling. Both metabolicheat generation and blood perfusion were considered. The set of model parameters was selected anda sensitivity study was carried out. Analysis of dimensionless sensitivity coefficients showed that the mostimportant are: the contact thermal resistance between the cool-cap and skin, the thermal resistance ofthe plastic wall material, and deep (arterial) blood temperature. The function specification method wasapplied to estimate the value of the contact resistance. Two, four and six computationally simulated mea-surements with different uncertainties were used to adjust random contact resistance value to the assumedone. Results showed that when using only two measurements having 2% of the uncertainty, the error ofestimation does not exceed 9.8%. However, when using six measurements having 1% of uncertainty, theresulting estimation is burdened with an error of 0.3% only.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.