Recent climate changes stimulate the search and introduction of solutions for the reduction of the anthropogenic effect upon the environment. Transition to the oxy-fuel combustion power cycles is an advanced method of CO2 emission reduction. In these energy units, the main fuel is natural gas but the cycles may also work on syngas produced by the solid fuel gasification process. This paper discloses a new highly efficient oxy-fuel combustion power cycle with coal gasification, which utilizes the syngas heat in two additional nitrogen gas turbine units. The cycle mathematics simulation and optimization result with the energy unit net efficiency of 40.43%. Parametric studies of the cycle show influence of the parameters upon the energy unit net efficiency. Change of the cycle fuel from natural gas to coal is followed by a nearly twice increase of the carbon dioxide emission from 4.63 to 9.92 gmCO2/kWh.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Most thermal and nuclear power plants use a steam turbine to convert steam potential energy into mechanical work on the rotating rotor. To operate the steam turbine at high efficiency, the aerodynamic losses in the flow path must be decreased, especially in a low-pressure turbine (LPT). This study focuses on the problem of flow separation in the area of the external contour, occurring at high expansion angles of the flow path and constituting a principal cause of flow non-uniformity upstream of the nozzle assembly. Under specific flow conditions, the nozzle assembly peripheral area can be blocked by concentrated vortex, resulting in a sharp increase in losses. A numerical study and comparative analysis of two solutions to this problem were conducted. Quantitative evaluation of nozzle blade cascade energy loss reduction showed that the flow suction on the external surface of a wide-angle diffuser is the most effective in the case of removal of 2% of total flow, using holes located in the middle of an annular diffuser. In this case, the loss coefficient of nozzle blade cascade was reduced by 2.1%. Enhancement of LPT flow path, by mounting an aerodynamic deflector in a wide-angle diffuser, led to a 3% decrease in the loss coefficient. The research results lead to the conclusion that energy losses caused by high expansion angles of LPT flow path can be reduced by applying the considered methods to prevent flow separation on the external contour upstream of the nozzle assembly.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.