Purpose: The brake system is the most significant component of a vehicle because it protects the driver, passengers, other road users, and property on both sides of the road. The basic principle of the disc brake system depends on the friction-based between the brake pads and rotor disc. Design/methodology/approach: The paper introduced a developed 3D finite element thermal model of the brake system to simulate the heat generated by friction in the vehicle's disc brake. Findings: The results presented the surface temperature at any instant of the disc brake under various initial velocities when the materials properties of the rotor disc and pad depend on temperature. Research limitations/implications: The main aim of the present paper is to build a numerical model to simulate the braking process under various initial vehicle velocities and investigate the influence of the material properties when they function on temperature and constant. Originality/value: The maximum difference between the two cases (contact and depend on the temperature) was 17 K for the initial velocity of 144,120. Also, it was found out that the percentage differences of the surface temperature increasing with the rise in initial vehicle velocity were 323% and 392.5% when the initial velocity of the vehicle increased from 100 km/h to 144 km/h.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The present study is devoted to investigate the influences of hall current on unsteady free convection flow of magnetohydrodynamic non-Newtonian viscoelastic incompressible fluid with mass transfer over an infinite vertical porous plate. The system is stressed by uniform magnetic field acting in a plane, which makes an angle α with the plane transverse to the plate over an infinite vertical porous plate. The Walter's model is used to characterize the non-Newtonian fluid behavior. Similarity solution for the transformed governing equations is obtained with prescribed variable suction velocity. Numerical results for the details of the velocity, temperature and concentration profiles are shown on graphs. Excess surface temperature as well as concentration gradient at the wall have been presented for different values of the elasticity parameter n0, magnetic parameter M, Schmidt number Sc, Grashof number Gr, modified Grashof number Gc, Hall parameter m, Dufour number Df, Soret number Sr and permeability parameter k*.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper the steady motion of an electrically conducting, viscous and incompressible non-Newtonian fluid past a porous flat plate under a transverse magnetic filed is considered. Analytically expressions for the velocity, temperature, skin friction and magnetic induction have been obtained by using the perturbation technique. Our results are compared with the previous ordinary Newtonian fluid results. The results have been shown graphically, and the effect of different parameters on the velocity, the magnetic induction, coefficient of skin friction and temperature are discussed in these cases.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.