Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper is focused on the study of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium by taking into account of the Soret/Dufour effects. The boundary layer equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters, namely the buoyancy ratio parameter, Prandtl number, Forchheimer number, magnetohydrodynamic body force parameter, Soret and Dufour numbers. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. Increasing the Forchheimer inertial drag parameter reduces velocity but elevates temperature and concentration. Increasing the Soret number and simultaneously reducing the Dufour number greatly boosts the local heat transfer rate at the cylinder surface. A comparative study of the previously published and present results in a limiting sense is made and an excellent agreement is found between the results.
EN
A numerical investigation of two dimensional steady magnetohydrodynamics heat and mass transfer by laminar free convection from a radiative horizontal circular cylinder in a non-Darcy porous medium is presented by taking into account the Soret/Dufour effects. The boundary layer conservation equations, which are parabolic in nature, are normalized into non-similar form and then solved numerically with the well-tested, efficient, implicit, stable Keller–Box finite-difference scheme. We use simple central difference derivatives and averages at the mid points of net rectangles to get finite difference equations with a second order truncation error. We have conducted a grid sensitivity and time calculation of the solution execution. Numerical results are obtained for the velocity, temperature and concentration distributions, as well as the local skin friction, Nusselt number and Sherwood number for several values of the parameters. The dependency of the thermophysical properties has been discussed on the parameters and shown graphically. The Darcy number accelerates the flow due to a corresponding rise in permeability of the regime and concomitant decrease in Darcian impedance. A comparative study between the previously published and present results in a limiting sense is found in an excellent agreement.
EN
An incompressible flow of a non-Newtonian Spriggs fluid over an unsteady oscillating plate is investigated using the Homotopy Analysis Method (HAM). An analytic solution of sine and cosine oscillations of the plate has been obtained. The similarity transformation is introduced to reduce the governing partial differentia equations into a single non-linear dimensionless partial differential equation. The effects of the power index of Spriggs fluid and convergence control parameter of HAM for the flow are studied extensively. The range of the convergence control parameter for convergence of series solution for different values of the power index of Spriggs fluid is obtained. The solution for a Spriggs fluid is noticeably different from the solution obtained for a Newtonian fluid. The influences of the shear thinning and shear thickening fluid on the velocity profile are shown graphically. The transient flow effect is higher for non-Newtonian Spriggs fluid than that of a Newtonian fluid. It is also observed that the interval to reach the steady state for the cosine case is less than the sine case. The applications of Stokes’ second problem have been widely found in the variety of fields of biomedical, medical, chemical, micro and nanotechnology.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.