Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article is devoted to the determination of the friction force between the draw rod and the guide and to the analytical study of the stress deformation state of the valve assembly of the rod well pump. In sucker rod well pumps, a hollow cylindrical guide is used to ensure the same axis of the plunger as the cylinder during operation. The guide is attached to the upper end of the pump cylinder. The draw rod connecting the sucker rod and the plunger of the pump moves up and down in the internal cylindrical cavity of the guide in the corresponding movements of the balancer head. There must be a certain clearance between the draw rod and the guide to ensure free movement of the draw rod. Based on the calculation scheme for determining the friction force between the draw rod and the guide is given, and the necessary parameters are determined. According to the values obtained from the calculation, the graphs were built based on the dependences of the friction force between the draw rod and the guide on the angle φ, and on the path of the plunger when φ = 30. At the same time, according to the calculation scheme of the "ball-saddle" pair, the force acting on the ball, the stresses generated on the contact surfaces of the ball and the saddle, and other parameters were found. The friction and wear between the draw rod and the guide is also typical of the friction and wear between the polished rod and the wellhead forming structure. Because, in the latter case, as a result of the suspension point of the balancer head not having the same axis as the wellhead, the polished rod cannot move with the straight axis in wellhead valve.
PL
Artykuł zawiera opis metody wyznaczania siły tarcia pomiędzy cięgłem a prowadnicą cięgła dławikowej pompy wgłębnej oraz analizę odkształcenia naprężeniowego zespołu zaworowego pompy. W żerdziowych pompach wgłębnych stosuje się drążone cylindryczne prowadnice w celu zapewnienia współosiowości nurnika i cylindra pompy. Prowadnica ta jest przymocowana do górnej końcówki cylindra pompy. Cięgło stanowi połączenie żerdzi pompowej z nurnikiem pompy. Porusza się ono w górę i w dół w cylindrycznej prowadnicy, zgodnie z ruchem głowicy wyważającej. Pomiędzy cięgłem a prowadnicą należy zapewnić odpowiedni luz tak, aby zapewnić swobodny ruch cięgła. Wszelkie niezbędne parametry układu ustalono na podstawie schematu obliczeniowego siły tarcia występującego pomiędzy cięgłem a prowadnicą. Na podstawie wartości uzyskanych podczas obliczeń utworzono wykresy obrazujące zależności siły tarcia pomiędzy cięgłem a prowadnicą dla kąta φ oraz dla toru posuwu nurnika, gdy φ = 30. Jednocześnie, zgodnie ze schematem obliczeniowym pary „kula–gniazdo”, wyznaczono siłę działającą na kulę, naprężenia powstające na powierzchniach styku kuli i gniazda oraz inne parametry. Tarcie i zużycie pomiędzy cięgłem a prowadnicą jest również typowe dla tarcia i zużycia występujących pomiędzy drążkiem polerowanym a prowadnicą w zagłowiczeniu odwiertu. W tym drugim przypadku ze względu na to, że punkt zawieszenia głowicy wyważającej nie znajduje się w osi głowicy odwiertu, drążek polerowany nie może się poruszać w osi zaworu głowicy odwiertu.
EN
The article indicates that engineering design criteria do not provide measures to prevent failures; this is evidenced by the occurrence of many accidents. Fracture prevention criteria should be derived from the principles of fracture mechanics, what should be developed further. However, the current concepts of fracture mechanics, when properly applied, provide an opportunity to ensure the reliability of the structure or organise the supervision of expensive structures to ensure their safe operation. These methods of preventing damage can be divided into two large groups: 1) checking for the formation of cracks and 2) monitoring their development. Both methods are based on similar principles; it would be easier to explain them with examples. To ensure the safe operation of the pressure vessel used in the reactor, the maximum allowable initial crack size should be known. The size of this crack should not expand to a critical point during the entire operation of the reactor. Knowing how the process of crack propagation proceeds and how the structure behaves during failure, it is possible to calculate the critical size of the defect and, based on this, calculate the maximum allowable size of the crack at the beginning of operation. Proper inspection of the new vessel will eliminate the possibility of shells that are larger than the original size. Checking for the presence of cracks, and determining their rate of growth during operation, presents significant difficulties. Therefore, checks should be avoided during operation. If the fracture and crack growth calculations, as well as the initial checks, are carried out correctly, then checks made during operation are an optional extra. However, in practice, such checks should still be performed. For vessels used in reactors, remote observation of crack growth using ultrasonic waves is a particularly useful method. If a crack is found, measures must be taken to either repair or replace the partially destroyed element.
PL
W artykule wskazano, że kryteria na etapie tworzenia projektu technicznego często nie uwzględniają środków zapobiegających awariom, o czym świadczą liczne wypadki przy pracy. Kryteria zapobiegania powstawaniu pęknięć powinny być wyprowadzane z zasad mechaniki powstawania pęknięć, co wymaga dalszego rozwoju. Jednak obecne koncepcje mechaniki powstawania pęknięć, przy ich właściwym stosowaniu, dają możliwość zapewnienia niezawodności konstrukcji lub zorganizowania nadzoru nad kosztownymi konstrukcjami, aby zapewnić ich bezpieczną eksploatację. Te metody zapobiegania uszkodzeniom można podzielić na dwie duże grupy: 1) kontrola pod kątem powstawania pęknięć, 2) monitorowanie ich wzrostu. Obie metody opierają się na podobnych zasadach i lepiej wyjaśnić je na przykładach. W celu zapewnienia bezpiecznej eksploatacji zbiornika ciśnieniowego używanego w reaktorze należy znać maksymalną dopuszczalną początkową wielkość pęknięcia. Wielkość takiego pęknięcia nie powinna wzrosnąć do wartości krytycznej przez cały czas pracy reaktora. Wiedząc, jak przebiega proces propagacji pęknięć i jak zachowuje się konstrukcja podczas uszkodzenia, można obliczyć krytyczną wielkość uszkodzenia i na tej podstawie obliczyć maksymalną dopuszczalną wielkość pęknięcia na początku eksploatacji. Prawidłowa kontrola nowego zbiornika wyeliminuje możliwość wystąpienia pęknięć większych niż o pierwotnym rozmiarze. Kontrole pod kątem obecności pęknięć i określenie tempa ich wzrostu podczas pracy wiążą się z dużymi trudnościami. Dlatego należy unikać wykonywania kontroli podczas pracy. Jeżeli obliczenia dotyczące pęknięć i ich wzrostu, jak również kontrole wstępne, zostały przeprowadzone prawidłowo, to kontrole podczas eksploatacji byłyby opcjonalnym dodatkiem. Jednak w praktyce takie kontrole i tak są przeprowadzane. W przypadku zbiorników używanych w reaktorach szczególnie przydatną metodą jest zdalna obserwacja wzrostu pęknięć za pomocą fal ultradźwiękowych. W przypadku stwierdzenia pęknięcia należy podjąć działania w celu naprawy lub wymiany częściowo zniszczonego elementu.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.