Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Mechanical alloying of high-purity aluminum and 10 wt.% NiO powders combined with powder vacuum compression and following hot extrusion method was used to produce an Al-NiO composite. Mechanical properties of as-extruded materials as well as the samples annealed at 823 K /6 h, were tested by compression at 293 K - 770 K. High mechanical properties of the material were attributed to the highly refined structure of the samples. It was found that the structure morphology was practically not changed during hot-compression tests. Therefore, the effect of deformation temperature on the hardness of as-deformed samples was very limited. The annealing of samples at 823 K/6 h induced a chemical reaction between NiO-particles and surrounding aluminum matrix. As a result, the development of very fine aluminum oxide and Al3Ni grains was observed.
PL
Kompozyt na osnowie aluminium zawierający dodatek 10% mas. NiO wytworzono metodą mechanicznej syntezy stosując mielenie proszków aluminium i tlenku niklu oraz mechaniczną konsolidację uzyskanego proszku metodą prasowania próżnio- wego i wyciskania w temperaturze 673 K Własności mechaniczne uzyskanego kompozytu, jak również próbek wyżarzonych w 773 K/6 godz., badano w zakresie 293 K-770 K w próbie ściskania. Badania strukturalne wykazały silne rozdrobnienie skład- ników strukturalnych zarówno w materiale wyciskanym, jak również w próbkach wyżarzonych, co jest przyczyną wysokich własności mechanicznych uzyskanego kompojrytu. W przypadku próbek odkształcanych „na gorąco” praktycznie nie obserwuje się istotnych zmian morfologii struktury. Jednakże wyżarzanie w 823 K/6 godz. spowodowało zmiany strukturalne wywołane reakcją chemiczną między cząstkami NiO a osnową, której skutkiem było utworzenie silnie dyspersyjnych wydzieleń tlenku aluminium i ziam fezy międzymetalicznej typu AI3Ni.
EN
An Al(Mg)-NiO composite was manufactured using combined mechanical alloying (MA) and powder consolidation methods that yielded well-consolidated and very-fine grained bulk material. Compression tests at 293 K – 773 K revealed high mechanical properties of the material. Preliminary annealing at 823 K/6 h was found to result in the flow stress reduction at 573 K – 773 K. However, the effect of preliminary annealing on the flow stress value was relatively low for Al(Mg)-NiO if comparing to similar tests performed for the Al-NiO composite. Structural observations revealed very-fine grained structure of both as-extruded and annealed Al(Mg)-NiO composites. The chemical reaction between the composite matrix and reinforcements (NiO) at sufficiently high temperatures resulted in fine grains and spinel-type particles’ development. With respect to the similarly produced Al-NiO composite, a magnesium addition was found to intensify chemical reaction between Al(Mg)-based matrix and NiO particles. As result, fine Al3Ni particles were observed in both hot-extruded material and Al(Mg)-NiO samples annealed at 823 K/6 h.
PL
Kompozyt Al(Mg)-NiO wytworzono metodą mechanicznej syntezy stosując mielenie składników proszkowych i mechaniczną konsolidację uzyskanego proszku kompozytowego w procesie prasowania próżniowego i wyciskania „na gorąco”. Uzyskano jednorodny materiał charakteryzujący się dużym rozdrobnieniem składników strukturalnych. Próby ściskania w temperaturze 293 K – 773 K wykazały wysokie własności mechaniczne kompozytu. Wyżarzanie próbek w 823 K / 6 godz. spowodowało nieznaczne obniżenie wartości naprężenia uplastyczniającego w zakresie 573 K – 773 K, jednakże w znacznie mniejszym stopniu niż w porównywanym przypadku kompozytu nie zawierającego dodatku magnezu (Al-NiO), który opisano we wcześniejszej pracy. Obserwacje struktury wyjściowych próbek kompozytowych i próbek wyżarzonych w 823 K / 6 godz. wykazały zmiany strukturalne wywołane reakcją chemiczną między osnową kompozytu (Al-Mg) a dyspersyjnymi cząstkami zbrojenia (NiO), której skutkiem jest utworzenie silnie dyspersyjnych wydzieleń tlenków typu spinelu, oraz submikronowych ziarn typu Al3Ni. W porównaniu z kompozytem Al-NiO, dodatek magnezu powoduje zwiększenie szybkości reakcji chemicznej, która przejawia się utworzeniem ziarn fazy międzymetalicznej Al3Ni zarówno w materiale wyjściowym – wyciskanym „na gorąco” – jak również w próbkach wyżarzonych w 823 K / 6 godz.
EN
Tested Al-5Co and Al-5Mg-5Co materials were manufactured using a common ingot metallurgy (IM) and rapid solidification (RS) methods combined with mechanical consolidation of RS-powders and hot extrusion procedures. Mechanical properties of as-extruded IM and RS alloys were tested by compression at temperature range 293-773 K. Received true stress vs. true strain curves were typical for aluminum alloys that undergo dynamic recovery at high deformation temperature. It was found that the maximum flow stress value for Al-5Mg-5Co alloy was much higher than that for Al-5Co, both for IM and RS materials tested at low and intermediate deformation temperatures. The last effect results from the solid solution strengthening due to magnesium addition. However, the addition of 5% Mg results also in the reduction of melting temperature. Therefore, the flow stress for Al-5Mg-5Co alloy was relatively low at high deformation temperatures. Light microscopy observations revealed highly refined structure of RS materials. Analytical transmission electron microscopy analyses confirmed Al9Co2 particles development for all tested samples. Fine acicular particles in RS materials, ∽1μm in size, were found to grow during annealing at 823K for 168h. As result, the hardness of RS materials was reduced. It was found that severe plastic deformation due to extrusion and additional compression did not result in the fracture of fine particles in RS materials. On the other hand, large particles observed in IM materials (20μm) were not practically coarsened during annealing and related hardness of annealed samples remained practically unchanged. However, processing of IM materials was found to promote the fracture of coarse particles that is not acceptable at industrial processing technologies.
PL
W artykule przedstawiono wyniki badań stopów Al-5Co i Al-5Co-5Mg, które zostały przygotowane metodą metalurgii konwencjonalnej (IM), oraz metodą szybkiej krystalizacji (RS) połączonej z mechaniczną konsolidacją szybko-krystalizowanych proszków i wyciskaniem na gorąco. Ocenę własności mechanicznych wyciskanych stopów IM oraz RS wykonano za pomocą prób ściskania w zakresie temperatury 293-773K. Przebieg krzywych σt -εt dla badanych materiałów jest typowy dla stopów aluminium ulegającym zdrowieniu dynamicznemu. Naprężenie maksymalne stopów Al-5Mg-5Co jest znacznie wyższe niż w stopach Al-5Co zarówno wykonanych metodą IM jak i RS. Wraz ze wzrostem temperatury ściskania maleje wpływ umocnienia roztworowego magnezu na własności badanych stopów. Podczas odkształcania w 623K-773K naprężenie uplastyczniające dla stopu Al-5Co jest większe niż dla Al-5Co-5Mg. Wskazano, że przyczyną może być obniżanie się temperatury topnienia pod wpływem dodatku magnezu (zwiększenie temperatury homologicznej w próbach odkształcania). Obserwacje strukturalne materiałów po szybkiej krystalizacji wykonane z użyciem mikroskopii optycznej wykazały występowanie drobnoziarnistej struktury. Badania wykonane z użyciem transmisyjnej mikroskopii elektronowej potwierdziły występowanie we wszystkich badanych próbkach wydzieleń typu Al9Co2. Drobne wydzielenia w stopach RS o początkowej wielkości poniżej 1μm ulegają rozrostowi w czasie wyżarzania przez 168h w 823K, co powoduje zmniejszenie twardości szybko-krystalizowanych materiałów. Korzystna cecha tych materiałów jest m.in. ich zwiększona podatność na odkształcenie, która przejawia się brakiem pękania wydzieleń wskutek dużych odkształceń plastycznych wskutek wyciskania i późniejszego ściskania próbek. W materiałach IM, w których wielkość cząstek przekraczała 20μm, podczas wyżarzania nie obserwowano zauważalnego efektu rozrostu wydzieleń, co się wiąże z brakiem istotnych zmian twardości stopu podczas wyżarzania. Jednakże występowanie tak dużych cząstek po procesie IM jest nie do zaakceptowania w przemysłowych procesach przetwórstwa metali ze względu na pękanie wydzieleń podczas przeróbki, co na ogół prowadzi do makroskopowego pękania wyrobów.
PL
W artykule opisano cechy strukturalne i własności kompozytu na osnowie stopu aluminium-magnez umocnionego dodatkiem tlenku boru, wytworzonego metodą mechanicznej syntezy składników. Badania strukturalne wykazały niewielką porowatość wyciskanego "na gorąco" materiału kompozytowego oraz silne rozdrobnienie składników strukturalnych. Nanometryczne cechy struktury przyczyniły się do uzyskania wysokiej twardości i wysokich własności mechanicznych materiału kompozytowego. Ze względu na chemiczną reaktywność składników kompozytu stwierdzono, że wyżarzanie w temperaturze 550 [stopni] C/168 godz. prowadzi lokalnie do reakcji chemicznej i tworzenia się silnie dyspersyjnych wydzieleń nowych faz, takich jak tlenki magnezu, węgliko-borki aluminium. Pomimo długotrwałego wyżarzania w wysokiej temperaturze i reakcji chemicznej między składnikami, mikrotwardość kompozytu nie uległa istotnej zmianie, utrzymując się w zakresie wartości 123-140 HV. Testy wysokotemperaturowego ściskania kompozytu Al(Mg)-B2O3 wykazały wysokie wartości naprężenia uplastyczniającego, znacznie przekraczające porównywalne wielkości dla przykładowych innych wysoko wytrzymałych materiałów na osnowie aluminium. Wadą kompozytu Al(Mg)-B2O3 jest skłonność do rozdzielania się skonsolidowanych ziaren proszku kompozytowego (pękania) podczas próby spęczania w temperaturze 20-300 [stopni]C w zastosowanym zakresie odkształcenia do [epsilon]t - 0,4. W warunkach podwyższonej temperatury odkształcania materiał wykazuje znacznie większe możliwości odkształcenia plastycznego bez zniszczenia próbki, co wskazuje na potencjalne możliwości przeróbki plastycznej kompozytu w podwyższonej temperaturze. Stwierdzone doświadczalnie utrzymanie silnie dyspersyjnej struktury kompozytu w warunkach działania wysokiej temperatury gwarantuje utrzymanie wysokich własności mechanicznych kształtowanego wyrobu.
EN
Mechanical alloying and powder metallurgy procedures were used for manufacturing Al(Mg)-B2O3 composite. An aluminum powder and the addition of 7.66 wt % Mg and 5.46 wt % B2O3 powders were milled in argon atmosphere for 30 h using Attritor mill. A few percentage addition of methanol was used to protect the sintering of milled powders. Received composite powders were compressed in AA6065 can under 100 ton press. As compressed powders were vacuum degassed at 400 [degrees]C and extruded by means of KOBO method. Rods of 7 mm in diameter were extruded without preheating of the charge using extrusion ratio [lambda] = 19. Transmission electron microscopy (TEM) observations revealed a very fine grained structure of the composite. Distribution of alloying elements was practically uniform, however, the analysis of boron was unattainable at used energy dispersive X-ray analysis method (EDS). A low porosity and a heavy refined structure of the material was found to result in high hardness of the composite. The material hardness was remained within 123-140 HV in spite of the longterm annealing at 500-550 [degrees]C. TEM analyses revealed the effect of the chemical reaction between basic components of the composite, which resulted in the development of new structural components such as MgO and Al3BC fine particles. Hot compression tests at 20-500 [degrees]C were performed using constant true strain rate 5-10-3 s-1. Samples deformed at 20-300 [degrees]C were fractured because of the splitting of the composite powder granules. However, the samples deformed at higher temperature range were deformed up to et - 0.4 without the material fracture. The last statement provides promising expectation for a successful processing of the material at high enough temperature to receive desired shape of the product. Moreover, remaining of nano-sized structure of the hot deformed and/or annealed material guarantees very high mechanical properties of the product.
EN
Purpose: Experiments on rapidly solidified (RS) and industrially manufactured (IM) Al-6Mn-3Mg alloy were performed to test the effect of RS on the structure and mechanical properties of the material. Design/methodology/approach: Annealing of as-extruded RS and IM samples was performed at 500°C in order to test the stability of structural components and related hardness of the materials. Mechanical properties of as-extruded RS and IM materials as well as the samples preliminarily annealed at 500°C / 6 h were tested by compression at 20°C-500°C. Structural investigations were performed using analytical transmission electron microscopy techniques. Findings: The flow stress for RS-samples was found to be about 240 MPa higher at 293 K than that for IM material. However, the difference between the flow stress values observed for RS and IM samples was remarkably reduced at higher deformation temperatures. Annealing at 500°C was found to result in reduction of the RS-material hardness due to the recovery process and slightly marked coarsening of Al6Mn particles. The particles observed in both as extruded and RS-samples annealed 500°C / 7 days were at least 10-times smaller than that for the industrial material. Practical implications: Due to refined structure and the negligible particle coarsening at high annealing temperatures, the products made from RS Al-6Mn-3Mg alloy can be used at high service temperature applications. Originality/value: Hardening of non-heat-treatable Al-6Mn-3Mg alloy is possible due to effective refining of Al6Mn particles using the rapid solidification and adequate consolidation procedure of RS-powders. The highest flow stress was observed for RS samples tested at room temperature. However, increasing deformation temperature was found to result in reduced difference between the flow stress values received for RS and IM materials.
EN
The effect of rapid solidification on mechanical properties and microstructure of the Al-based ternary alloys has been investigated. Experiments were performed on rapidly solidified (RS) flakes manufactured from Al-4Fe-4Ni alloy by means of gas atomizing of the molten alloy and rapid quenching on rotating water cooled copper roll. As received flakes were consolidated to the bulk PM material by cold pressing, vacuum degassing and hot extrusion. Finally, rods of 7 mm in diameter were received using cross-section reduction ratio of & = 25. For comparison purposes, the conventionally cast and hot extruded Al-4Fe-4Ni alloy was studied as well. Mechanical properties of as extruded materials were examined by compression tests at 293÷823 K at constant strain rate of 5?10-3 s-1. Relatively high strength of as-extruded PM material was accompanied by high ductility of samples deformed by compression. Structural observations confirmed the possibility of minimizing the coarsening of intermetallic compounds by RS process, however some inhomogeneity of distribution of fine transition metal compounds was observed. Nevertheless, it was considered that dispersion of intermetallic compounds was contributing the microhardness and strength increase in the rapidly solidified Al-4Fe-4Ni alloy.
PL
W pracy przedstawiono wpływ szybkiej krystalizacji na strukturę i własności trójskładnikowych stopów na bazie aluminium. Prace eksperymentalne przeprowadzono na szybko krystalizowanych płatkach wykonanych ze stopu Al-4Fe-4Ni. Proces konsolidacji prowadzono przez prasowanie na zimno, próżniowe odgazowanie oraz wyciskanie na gorąco ze stopniem redukcji przekroju 25, uzyskując pręty o średnicy 7 mm. W celach porównawczych badania przeprowadzono również dla stopu Al-4Fe-4Ni wyciśniętego z materiału przemysłowego, wykonanego za pomocą konwencjonalnych metod metalurgiczno-przetwórczych. Własności mechaniczne określono na podstawie próby ściskania przeprowadzonej w zakresie temperatury 293÷823 K przy stałej prędkości odkształcania 5?10-3 s-1. Z badań tych wynika, że materiały proszkowe skonsolidowane na drodze wyciskania charakteryzują się wysokimi właściwościami wytrzymałościowymi przy zachowaniu dobrej plastyczności. Obserwacje mikrostrukturalne potwierdzają, że proces szybkiej krystalizacji minimalizuje rozrost ziaren faz międzymetalicznych, przy czym stwierdzono zauważalną niejednorodność w rozmieszczeniu wydzieleń. Niemniej jednak charakterystyczna morfologia wydzieleń uzyskana wskutek szybkiej krystalizacji i chłodzenia przyczynia się do wzrostu twardości i wytrzymałości stopu Al-4Fe-4Ni.
PL
Przedstawiono skrótowy przegląd badań lekkich kompozytów metalicznych na osnowie Al i stopu Al-Mg wytwarzanych w ramach współpracy badawczej Nihon University w Tokio i Akademii Górniczo-Hutniczej. Od 1998 roku prowadzone są badania kompozytów zawierających 8÷19 % tlenków metali ze szczególnym uwzględnieniem wpływu temperatury na strukturę i własności materiału. Reakcja chemiczna w podwyższonej temperaturze może spowodować redukcję tlenków (Me-O) i zmiany struktury prowadzące do utworzenia tlenków aluminium lub złożonych faz Al(Mg)-O. Wyróżniono dwie podstawowe grupy kompozytów: (1) materiały, w których zredukowany metal (Me) jest praktycznie nierozpuszczalny w osnowie, oraz (2) materiały, w których uwolniony Me tworzy fazy międzymetaliczne z metalem osnowy. Istotnym problemem w produkcji kompozytów jest porowatość pojawiająca się przede wszystkim w wyniku reakcji chemicznej zależnie od lokalnej zmiany objętości składników i produktów reakcji w stanie stałym. W poszukiwaniu nowych składników umacniających kompozyty zwrócono uwagę na inne związki metali, które nie powodują nadmiernego utleniania osnowy, tak jak w wyniku redukcji tlenków. Wstępne badania zostały przeprowadzone dla kompozytu Al(Mg)-ZrSi2. Stwierdzono, że reakcja chemiczna między składnikami podczas wyżarzania lub odkształcania w podwyższonej temperaturze nie prowadzi do nadmiernych zmian silnie rozdrobnionej struktury materiału. Wielkość obserwowanych w osnowie dyspersyjnych tlenków typu Al-Mg-O nie ulega praktycznie zmianie nawet po przetopieniu kompozytu.
EN
Brief overview through research work on light-metal based composites developed at Nihon University, Tokyo and tested at AGH — University of Science and Technology according to bilateral research cooperation program is presented. Since 1998 a number of experiments were performed on aluminum and aluminum-magnesium based composites containing 8÷10 % other metal oxides in order to test the effect of temperature on the material structure and properties. Chemical reaction between the composite components at high enough temperature result in reduction of Me-oxides and development of very fine Al- and Al(Mg)-oxides within the matrix. In general, two groups of composites were distinguished: (1) composites containing Me-elements that are insoluble in Al-matrix and (2) composites containing Me-elements that create Al-Me or Al-Mg-Me intermetallics. Material porosity was found to depend on local volume contraction during chemical reaction as well as following intermetallic grains growth and related contraction/expansion effect. Searching for new hardening components was undertaken in order to select oxygen-free hardening components that avoid excessive oxidation of the matrix that result from chemical reaction at high temperature. Preliminary experiments were performed on Al(Mg)-ZrSi2 composite. It was observed that heavy refined structure of mechanically alloyed composite was practically unchanged during annealing even if some structural processes from chemical reaction between components were observed. Very fine Al(Mg)-O particles, that developed in the composite matrix, were practically stable in their size even if the material was re-melted above the matrix liquidus temperature.
EN
A brief review of structural investigation and results of mechanical tests for mechanically alloyed Al-based composites is presented. As an example, the effect of annealing temperature on the structure and properties of Al-Nb2O5 composite was discussed. It was found that chemical reaction between components during aging at 873 K resulted in an increase of material porosity. Opposite effect of the local volume increase due to intermetallic grain growth was not efficient enough to eliminate the porosity of the annealed material. Annealing of the composite at 873 K was found to result in material hardening. The hardness maximum was observed for samples annealed for 12 h at 873 K. Following softening at prolonged annealing time was ascribed to the grain coarsening and increased porosity of the composite. High strength of the composite, suspected from highly refined structure of the material, was proved by hot deformation tests at 623-903 K.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.