Geothermal energy is considered renewable energy that is environmentally friendly and sustainable compared to the conventional energy from fossil fuels. However, uncontrolled geothermal exploitation can cause a decrease in the groundwater table and reservoir temperature, such as in the Jaboi volcano on Weh Island, where a power plant has been built to generate electrical energy with an estimated power of 50 MWe but still has not been operated. A geophysical survey is needed to determine the local hydrothermal system, including groundwater reserves under the surface which can be used to refill the hydrothermal wells during exploitation. This study measured vertical electrical sounding (VES) data at 15 points near the crater and geothermal power plant. In addition, very-low-frequency (VLF) data that pass through the crater were also collected to determine the presence of other hydrothermal resources such as fractures and faults. The results of the 1D least-square inversion show three subsurface models where groundwater resources with low resistivity (< 1.5 Qm) are found at a depth of 50-100 m. The same results are also obtained from the 2D cross-section model that impermeable resistive anomalies in alluvial and tuff rocks dominate the near-surface area. The layer after groundwater is an impermeable rock in the form of breccia. The results of 2D VES and VLF modeling also show the presence of the Ceunohot and Leumomate faults, which are beneficial as fluid access to the surface. Based on the data analysis, the combination of VES and VLF data can be used to image shallow hydrothermal systems such as groundwater resources and faults in the Jaboi volcano.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The Great Sumatran Fault (GSF) activity is a severe threat to Banda Aceh development as the capital city of Aceh Province, Indonesia. The earthquakes originating along this fault trace, despite generating low strength, considerably threaten infra structure and human lives. Therefore, a detailed study of the GSF activity and presence becomes critical. In this paper, we applied the Global Gravity Model plus (GGMPlus) to map the subsurface structure and modeling of two GSF segments with a resolution of 200 m/px, namely the Aceh and Seulimeum segments toward the north of the Sumatran Island. The Bouguer anomaly data are inconsistent with the geology of the study areas, dominated by igneous rocks on the Aceh segment and volcanic rocks on the Seulimeum segment. Further, the contrast between the Seulimeum segment in the northeast and the Aceh segment in the southwest can be demonstrated by high-pass fltering. The GGMPlus data validation results with feld measurements using the Scintrex CG-5 Autograv, the root mean square error obtained via data comparison are 12.32% in the Krueng Raya fault zone, and 26.1% at the Seulawah Agam Volcano area, respectively. We also performed 2D gravity data modeling along with the Aceh and Seulimeum segments in the NW–SE direction. This model was then compared with the geological cross section, seismicity, and magnetotelluric data. The results of Singular Value Decomposition and Occam inversion show three vertical blocks of high densities with an interspersion of lower densities, which can be confrmed as the Aceh and Seulimeum segments. Based on data processing, it can be concluded that the GGMPlus satellite can improve the maps and images of the northernmost GSF structure.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.