Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
A robust myoelectric control system (MCS) is essential for the design of electromyography (EMG) based human–machine interface (HMI) designs such as prosthetics, exoskeleton, wheelchair and humanoid robots. The functionality of the current pattern recognition (PR) technique in MCS is limited by factors such as variation in the user’s limb position. To overcome the effect of this dynamic variation, an invariant higher order statistics – frequency domain feature set (HOS-FD) is proposed in this paper. EMG data from eight hand movements in five limb positions are considered. When trained with three limb position data, the HOS-FD with three hidden layers deep neural network (DNN) achieved a significantly high classification accuracy of 97.84%±0.22 compared to other classifiers viz., single layer artificial neural network (ANN), linear discriminant analysis (LDA), support vector machine (SVM), k nearest neighbor (kNN), decision tree (DT) and Naive Bayes (NB) classifiers with accuracies of 94.11%±1.63, 95.02%±1.89, 94.63%±2.33, 90.05 ± 4.11, 86.66 ± 4.72 and 78.78%±5.02 respectively. Further, when trained with data from all five limb positions, the proposed feature set with DNN had an accuracy of 99.16%±0.14. The statistical significance of the high classification accuracy obtained using the proposed feature set is also proven using multiple analysis of variance tests (p < 0.001). These results indicate that the proposed method is a promising technique for HMI.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.