Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
EN
A dataset containing over 13k samples of dry beans geometric features was analyzed using machine learning (ML) and deep learning (DL) techniques with the goal to automatically classify the bean species. Performance in terms of accuracy, train and test time was analyzed. First the original dataset was reduced to eliminate redundant features (too strongly correlated and echoing others). Then the dataset was visualized and analyzed with a few shallow learning techniques and simple artificial neural network. Cross validation was used to check the learning process repeatability. Influence of data preparation (dimension reduction) on shallow learning techniques were observed. In case of Multilayer Perceptron 3 activation functions were tried: ReLu, ELU and sigmoid. Random Forest appeared to be the best model for dry beans classification task reaching average accuracy reaching 92.61% with reasonable train and test times.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.