Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this paper, we compare the methodology of different time-step models in the context of Monte Carlo burnup calculations for nuclear reactors. We discuss the differences between staircase step model, slope model, bridge scheme and stochastic implicit Euler method proposed in literature. We focus on the spatial stability of depletion procedure and put additional emphasis on the problem of normalization of neutron source strength. Considered methodology has been implemented in our continuous energy Monte Carlo burnup code (MCB5). The burnup simulations have been performed using the simplified high temperature gas-cooled reactor (HTGR) system with and without modeling of control rod withdrawal. Useful conclusions have been formulated on the basis of results.
EN
Thermal hydraulic analysis of the reactor core is important since it allows to optimize the nuclear reactor operation and to avoid too high temperature in the fuel. Enhancement of the reactor core increases the safety and the efficiency of the reactor operation and it has positive impact on the logistic in the nuclear sector. The thermal analysis of the fuel block column of the high temperature reactor is presented. The 3D power density profile has been used in the thermal calculations to obtain the temperature field within the column of the nine fuel blocks. The hot spot for the critical power profile is found. Temperature profiles obtained in the analysis have been compared with the reference data to check the numerical model, which has been used in the CFD calculations. Obtained temperatures are consistent with the reference data, it proves that the numerical model is correct.
EN
Fuel cycle studies aim to provide the optimal utilization of the fuel in nuclear reactors. Most of the scientific efforts focus on the global integral results of material depletion, which are important for the nuclear power plant logistics. On the other hand, the local burnup effects are often neglected, what may lead to the bias of estimated quantities. Advanced systems such as High Temperature Reactor still require development of the reliable approach to the core physics at equilibrium state. In this work we check if a precise mesh of fuel zones helps to observe some systematic effects of fuel depletion in a graphite block from HTR of prismatic type. Continuous Energy Monte Carlo Burnup code MCB5 was applied to study evolution of power profile and isotopic densities. We draw conclusions concerning the local neutron physics, explain observed depletion phenomena and extrapolate the results on the full core studies. Furthermore, we explain significance our conclusions for the safety assessments.
PL
Badania cyklu paliwowego mają na celu optymalizację zużycia paliwa w reaktorach jądrowych. Większość wysiłków naukowych skupia się na całkowitych globalnych wynikach zubożenia materiałów, istotnych z punktu widzenia logistyki elektrowni atomowej. Z drugiej strony, lokalne efekty wypalenia są często zaniedbywane, co może prowadzić do przekłamań w oszacowanych wielkościach. Zaawansowane systemy takie jak reaktory wysokotemperaturowe HTR wciąż wymagają rozwoju wiarygodnego podejścia do fizyki rdzenia w stanie równowagowym. W niniejszej pracy sprawdzamy, czy precyzyjna dyskretyzacja stref paliwowych pozwala zaobserwować nowe efekty wypalenia paliwa w bloku grafitowym. Wyciągamy wnioski dotyczące wpływu na badania całego rdzenia oraz na oszacowania bezpieczeństwa systemu. Zastosowaliśmy kod przepałowy Monte Carlo MCB5 do symulacji zubożeniowych bloku paliwowego z reaktora HTR. Mikro-kapsułki TRISO i podwójna niejednorodność paliwa są precyzyjnie opisane w naszym modelu bazowanym na specyfikacji Projektu PuMA. Aby zbadać lokalne efekty wypalenia sprzężone z fizyką neutronową, dokładna siatka stref wertykalnych (24) oraz radialnych (9) została uwzględniona w naszym modelu numerycznym. Wymagane wielkości fizyczne są zbierane w trakcie procedury Monte Carlo a moduł zubożeniowy używa metody Analizy Trajektorii Transmutacji (TTA) w celu rozwiązania równań Bateman’a. Procedura jest powtarzana przy każdym kroku czasowym. Schemat przekroju bloku paliwowego rozważanego w naszych badaniach. Wyniki numeryczne wskazują na to, że gęstość mocy w paliwie zależy zarówno od pozycji w bloku jak i okresu naświetlenia. Niewielki nadmiar grafitu na pionowych peryferiach zwiększa lokalnie moderację neutronów i przyspiesza wypalanie rozszczepialnych izotopów. Gęstość mocy nie jest jednorodna i większa na brzegach bloku paliwowego. W rezultacie występuje tam wyższa temperatura i przepał paliwa, w szczególności na początku cyklu paliwowego. W przypadku scenariuszy awarii, wadliwe kapsułki mają większą szansę na wystąpienie w takiej lokalizacji.
EN
Most Monte Carlo codes are used to determine certain values with their uncertainty accompanying through stochastic process. Those estimations are crucial information to determine the logistics of frontend and the back-end of nuclear chain supply management. Monte Carlo method simulate physics interactions, where correct results can be obtained if users is running a sufficient number of neutron histories adequately to sample all significant regions of the problem. The code by using internal random walks of neutrons is able to estimate a nuclear parameter k-eff (multiplication factor) and fission source distribution responsible for the ratio of new neutrons generation in the following step. Each neutron generation converges to the fix distribution, which can be characterized by Shannon entropy. Tallies of k-eff and spatial reaction rates starts accumulated information after adjusted cut-off step. However, convergence can stop at some level causing neutron distribution tilt and introducing influence to the reaction rate. Locally slightly different power distribution can occurs resulting in slightly different density evolution of the isotopes. In this paper we apply technics of multi “independent replicas” calculations. The ide based on many simulations of the same system using different random sequences to obtain slightly various solutions which will allows us to build any probability density function. Statistical analysis of the results would allow assessing the uncertainties in the calculated isotopes densities. In this work we examine multi recycle scheme in the fast neutron spectrum based on The Lead-cooled Fast Reactor (LFR) defined and studied at the level of technical design in order to demonstrate its propagation of isotopes evolutions together with uncertainties and highlight systematic errors, due to the number of simulated particles. All simulated aspect has to be considered while performing Monte Carlo burnup simulations.
EN
In the paper we describe problems related to steady-state Monte-Carlo burnup calculations of nuclear fuel. The existence of power profile oscillations coupled with Xe135 instabilities in LWR system was shown using code MCB5. The problem comes from instability of staircase point depletion algorithm applied to exponential solution of Bateman equations. The new methodology suggested in literature was implemented and tested. The results of calculations and efficiency of new model are important from the point of view of fuel cycle analysis and nuclear fuel logistics. Precise information about production and consumption of mass of isotopes is desired for planning transport of radioactive materials.
PL
W niniejszej pracy opisujemy problem związane z równowagowymi obliczeniami przepałowymi typu Monte-Carlo. Obecność oscylacji profilu mocy sprzężonych z niestabilnością Xe135 w systemach lekko-wodnych została pokazana z użyciem kodu MCB5. Problem pochodzi z niestabilności schodkowego modelu kroku w użyciu do rozwiązań równań Batemana. Nowa metodologia sugerowana w literaturze została zaimplementowana i przetestowana. Wyniki obliczeń i efektywność nowego modelu są istotne z punktu widzenia analizy cyklu paliwowego i logistyki paliw jądrowych. Dokładna informacja o produkcji i konsumpcji izotopów jest cenna przy planowaniu transportu materiałów promieniotwórczych.
EN
In the paper we describe problems related to the convergence diagnostics in the Monte Carlo modeling of the loosely coupled fissionable systems like arrays of the spent fuel elements. The logistics and trans-portation of the spent nuclear fuel is a complex process due to its high radioactivity and thus contamination risk for the biosphere and human beings. The detection of convergence is important for the accurate estimation of system multiplication factor and associated standard deviation. The multiplication factor is the main safety parameter used for design and optimization of the equipment for spent fuel handling and transportation in order to fulfill the international safety and security standards.
PL
Niniejsza praca przedstawia metody detekcji zbieżności w symulacjach Monte Carlo niezwiązanych systemów jądrowych takich jak zestawy kaset z wypalonym paliwem jądrowym. Logistyka oraz transport zużytego, radioaktywnego paliwa jądrowego jest skomplikowanym procesem charakteryzującym się potencjalnym ryzykiem skarżenia ekosfery i populacji ludzkiej. Detekcja zbieżności jest niezbędna przy estymowaniu współczynnika mnożenia neutronów oraz jego niepewności. Współczynnik mnożenia neu-tronów jest podstawowym parametrem wykorzystywanym do optymalizacji urządzeń do transportu oraz manewrowania zużytym paliwem jądrowym w celu spełnienia międzynarodowych wymagań bezpieczeństwa.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.