This study is devoted to the resilient control problem of a mobile sensor network with a Sybil attack and input delay. First, a fixed-time observer is constructed to estimate the state exactly, which makes it possible to calculate the settling time. Then, the delayed system is transformed into a delay-free system by introducing Artstein’s transformation, and a confidence metric is used to tackle the Sybil attack problem, which requires no additional data storage beyond signals. Furthermore, a novel distributed event-triggered fixed-time control scheme is proposed, and a triggering function is developed to generate triggering events asynchronously. Using the presented triggering function, each sensor communicates in discrete time, which is fully continuous-communication free. Several sufficient conditions are obtained, and a rigorous proof is given using Lyapunov stability and fixed-time stability theories. Finally, simulation results are presented to demonstrate the efficiency of the theoretical results such as the flocking context.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.