Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote An Optimal Frontier of the Efficiency of Tissue P Systems with Cell Separation
EN
A membrane system (P system) is a distributed computingmodel inspired by information processes in living cells. P systems previously provided new characterizations of a variety of complexity classes and their borderlines. Specifically, in tissue-like membrane systems, cell separation rules have been considered joint with communication rules of the form symport/antiport. On the one hand, only tractable problems can be efficiently solved by using cell separation and communication rules with length at most 2. On the other hand, an efficient and uniform solution to the SAT problem by using cell separation and communication rules with length at most 8 has been recently given. In this paper we improve the previous result by showing that the SAT problem can be solved by a family of tissue P systems with cell separation in linear time, by using communication rules with length at most 3. Thus, in the framework of tissue P systems with cell separation, we provide an optimal tractability borderline: passing from length 2 to 3 amounts to passing from non–efficiency to efficiency, assuming that P 6= NP.
2
Content available remote Three Universal Homogeneous Spiking Neural P Systems Using Max Spike
EN
We improve and extend a recent result showing that spiking neural P systems with the same rules in all neurons of the system (homogenous) and working in the max sequential manner are universal. The previous work in this area reported by the group led by Dr. Linqiang Pan did not put any bound on the number of neurons used. We believe this is an important question for any future practical implementation of such systems that deserves investigation, and we provide some results in this direction. Extending the aforementioned construction with the work of Korec on small register machines one could estimate the size of the previous construction at 105 neurons. We are able to improve this result and to show that an SNP system with 83 neurons having homogenous rules and working in the max sequential manner is universal. Several related results with respect to max-pseudo sequentiality mode are also obtained: 83 neurons are necessary for this case, too. When considering the case of systems without weighted synapses, we show that one needs at most 244 homogenous neurons for reaching universality in the max-pseudo sequentiality case.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.