Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 34

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
This paper presents the methodology for determining thermal strains and stresses during heating the charge in a rotary furnace. The calculations were made with the original software, which uses the finite element method. The heat transfer boundary conditions used for computing were verified on the basis of industrial tests. Good compatibility between the experimental data and numerical calculations was obtained. The possibility of the material cracking occurrence was checked for a set exhaust gas temperature distribution on the furnace length. As a result, it was possible to develop steel heating curves characterized by short process times.
EN
The inverse method was applied to determine the heat flux reaching the charge surface. The inverse solution was based upon finding the minimum of the error norm between the measured and calculated temperatures. The charge temperature field was calculated with the finite element method by solving the heat transfer equation for a square charge made of 15HM steel heated on all its surfaces. On the basis of the mean value of heat flux, the value of the heat transfer coefficient at each surface was determined depending on the surface temperature of the material heated.
PL
Współczynnik wymiany ciepła na powierzchni płyty osłoniętej ekranem cieplnym i bez osłony wyznaczano z zastosowaniem rozwiązania odwrotnego. Badania chłodzenia płyty przeprowadzono na zaprojektowanym i wykonanym stanowisku badawczym. Pomiar temperatury płyty ze stali EN 1.4724 realizowano za pomocą 9 termoelementów typu K umieszczonych 2 mm pod powierzchnią chłodzoną. Proces chłodzenia w powietrzu realizowano w 2 wariantach: w obecności ekranu aluminiowego oraz bez ekranu. Podczas chłodzenia mierzono temperaturę płyty od 800oC do około 40oC. Rozwiązanie równania przewodzenia ciepła w chłodzonej płycie oparto na metodzie elementów skończonych. Zastosowano nieliniowe funkcje kształtu opisane wielomianami Hermite’a. Przeprowadzono testy dokładności rozwiązania odwrotnego, które wykazały jego poprawność. Rozkład współczynnika wymiany ciepła w czasie aproksymowano za pomocą parabolicznych funkcji kształtu.
EN
An inverse method has been applied in to determine the heat transfer coefficient on the surface of a plate protected by a thermal shield and without protection. For purposes of the analysis a dedicated test stand has been designed. Temperature measurement of EN 1.4724 steel was executed with nine K type thermocouples placed 2 mm under the cooled surface. The cooling process in air was executed in two modes: with and without the aluminum shield. The temperature has been measured during plate cooling from 800oC to about 40oC. The solution of the heat conduction equation in the cooled plate was based on the finite element method. Nonlinear shape functions described by Hermite polynomials have been applied. The accuracy of the inverse solution has been tested and justified. The distribution of heat transfer coefficient in time was approximated with the use of quadratic shape functions.
EN
In this study, a method of determining the heat flux, which reaches the surface of a charge, has been presented with the use of an inverse analysis. The research on the heating process of a square 15HM steel charge was conducted in a natural gas-fired laboratory furnace. The inverse solution was based on the search of the minimum standard error between the measured and the calculated temperatures. The temperature of the charge has been calculated by the finite element method, solving the heat conduction equation for a square charge heated on all the surfaces. As a result, the mean value of the heat flux on each of the heated surfaces of the charge was estimated.
PL
W pracy przedstawiono wyniki obliczeń metodą elementów skończonych zmiany temperatury ścian pieca podczas nagrzewania, wygrzewania i chłodzenia w piecu komorowym. Przeprowadzono analizę wpływu konstrukcji obmurza pieca na ilość ciepła akumulowanego oraz oddawanego do otoczenia. Oceniono ilość energii akumulowanej przez wsad. Oszacowano zmianę wartości współczynnika wymiany ciepła w piecu dla zmiennego cyklu technologicznego. Określono typ konstrukcji, pozwalający osiągnąć najniższe wartości całkowitego ciepła zużytego na utrzymanie właściwej temperatury ściany w procesie nagrzewania. Obliczenia przeprowadzono dla stałego i zmiennego kroku czasowego.
EN
Charge heating for metal forming processes in the chamber furnaces is an energy consuming operation. Heat consumption results not only from charge temperature increase to the desired temperature at a level of 1200˚C and heat loses to the environment. Essential heat expenditure are required for elevating the furnace structure temperature to the operating temperature. Heat accumulated in the furnace walls depends on the heat capacity and mass of the insulating materials. Numerical simulations of the heat losses to the environment and heat accumulated in the furnace walls have been analyzed for various combinational of the insulating materials. The optimal furnace wall insulation has been proposed. Numerical issues concerning accuracy of the solution and the computation time has been addressed as well.
PL
W pracy przedstawiono model numeryczny wymiany ciepła w piecu grzewczym. Zaprezentowano wyniki symulacji komputerowych ukazujących wpływ wyłożenia ogniotrwałego pieca na proces nagrzewania wsadu. Analizie poddano pole temperatury i jego jednorodności we wsadzie, oraz czas potrzebny do nagrzewania wsadu. Model numeryczny i obliczenia opracowano w pakiecie ANSYS Fluent 14.5. Walidacji modelu numerycznego dokonano przy użyciu pieca testowego znajdującego się na wyposażeniu Katedry Techniki Cieplnej i Ochrony Środowiska AGH w Krakowie.
EN
This paper presents a numerical model of heat transfer in a heating furnace. The results of computer simulations show the influence of the refractory lining on the furnace charge heating process. The temperature field, the uniformity in the charge and the time needed to heat the charge have been analyzed. The numerical model was developed and calculations have been developed using the commercial program ANSYS FLUENT 14.5. Validation of the numerical model was made using a furnace testing equipment located on the Department of Thermal Engineering and Environment Protection, AGH University in Krakow.
PL
Celem umożliwienia analizy wpływu temperatury pieca i jej zmian w czasie na pole naprężeń i odkształceń w nagrzewanym wsadzie opracowano model matematyczny symulujący warunki panujące w piecach grzewczych. Obliczenia przeprowadzono za pomocą programu komputerowego dedykowanego dla procesu nagrzewania wsadu wielkogabarytowego. Pola naprężeń i odkształceń wyznaczono dla wlewka o masie 16 Mg. Weryfikację modelu wymiany ciepła przeprowadzono w oparciu o pomiary nagrzewania wsadu w piecu komorowym.
EN
The mathematical model of the stress and strain fields in the massive charge during heating was developed. Calculations were performed for the 16 Mg ingot heating in the chamber furnace. The validation of the developed heat transfer model has been performed in the Celsa Huta Ostrowiec steel plant.
PL
W pracy przedstawiono model numeryczny oraz wyniki obliczeń nagrzewania wsadu w przemysłowym piecu komorowym opalanym gazem ziemnym. Pola temperatur wsadu i elementów konstrukcji pieca zostały wyznaczone pakietem numerycznym ANSYS - Fluent 14.5. Wyniki obliczeń zostały porównane z pomiarami przeprowadzonymi w trakcie nagrzewania wsadu w piecu komorowym przeznaczonym dla wsadu wielkogabarytowego do przeróbki plastycznej. Analizie poddano jednorodność pola temperatury wsadu oraz gradient temperatury w elementach konstrukcji pieca. Opracowany model pozwala na optymalizację procesu nagrzewania wsadu w piecu komorowym.
EN
Charge heating in the industrial furnaces is a difficult and complex process. There are many physical phenomena which influence heat transfer. At the charge surface heat transfer takes place by radiation and convection. In order to ensure correct operation of the technological system, it is necessary to achieve the required charge temperature in the whole volume and ensure its uniformity. This paper presents the numerical model and the results of calculations of charge heating in the industrial chamber furnace. The temperature field of materials and structural elements of the furnace have been performed using the commercial program ANSYS - FLUENT. The calculation results has been compared with results of hating in industrial furnace. The homogeneity of the charge temperature field has been analysed. Developed model allows to optimize the heating process in the furnace chamber.
PL
Przemysłowe piece grzewcze, do których zaliczamy również piece komorowe, są najliczniejszą grupą zróżnicowaną konstrukcyjnie. Ich cechą charakterystyczną jest zmienność atmosfery wypełniającej komorę roboczą oraz wykorzystanie do ich budowy materiałów ogniotrwałych i izolujących. Wielkość zużytej energii cieplnej, zapewniającej realizację danej technologii nagrzewania wsadu lub obróbki cieplnej istotnie wpływa na koszt produkcji. Znaczne oszczędności paliwa i poprawę wydajność produkcji można osiągnąć poprzez zmniejszenie ilości ciepła zakumulowanego w elementach konstrukcyjnych pieca oraz traconego do otoczenia, przy zachowaniu wyrównanej temperatury w przestrzeni roboczej pieca. W pracy dokonano oceny zmian w czasie strat ciepła do otoczenia oraz strat ciepła na akumulację w piecu komorowym ze ścianami różnej konstrukcji. Obliczenia wykonano za pomocą programu opartego na metodzie elementów skończonych. Wytypowano konstrukcję ściany o najmniejszej energochłonności.
EN
Industrial furnaces, especially chamber furnaces are commonly used in industry. The chamber wall structures differ in thickness, as well as in the thermal insulation. The chamber furnace temperature varies in time depending on the technological process parameters. The heating time varies as well. Due to that reasons, heat losses to the atmosphere and the heat accumulated in the furnace volume have essential influence on the production costs. Reduction of the heat losses can have positive impact on the atmosphere pollution as well. The heat losses to the environment including the heat accumulated in the furnace walls have been analyzed. Several wall structures have been taken into account. The heat losses and furnace walls temperatures have been calculated using finite element method. The best structure of the furnace wall has been selected for the examined type of the chamber furnace.
EN
Charge heating in industrial furnaces is a difficult and complex process. There are many physical phenomena which influence heat transfer. At the charge surface heat transfer takes place by radiation and convection. In order to ensure correct operation of the technological system, it is necessary to achieve the required charge temperature in the whole volume and ensure its uniformity. The influence of selected burner locations inside the furnace on the charge temperature has been analysed. The temperature field and its uniformity in the round charge made of steel for hot open die forging have been analysed. The model and numerical calculations were performed with the ANSYS-Fluent 14.5 package.
PL
Nagrzewanie wsadu w piecach przemysłowych jest trudnym i złożonym procesem. Celem zapewnienia prawidłowej pracy ciągu technologicznego konieczne jest osiągnięcie przez wsad wymaganej temperatury w całej objętości, oraz zapewnienie odpowiedniej równomierności nagrzewania. W pracy określono wpływ sposobu nagrzewania wsadu w piecu komorowym dla wybranych wariantów usytuowania palników grzewczych. Analizie poddano pole temperatury i jego jednorodność w nagrzewanym wsadzie stalowym przeznaczonym do przeróbki plastycznej. Model i obliczenia wykonano pakietem numerycznym ANSYS-Fluent 14.5.
EN
The study presents the findings of research on developing heating curves of heavy parts for the open die forging process. Hot ingots are heated in a chamber furnace. The heating process of 10, 30, 50 Mg ingots was analyzed. In addition, bearing in mind their high susceptibility to fracture, the ingots were sorted into 3 heating groups, for which the initial furnace temperature was specified. The calculations were performed with self developed software Wlewek utilizing the finite element method for the temperature, stress and strain field computations.
PL
W pracy przedstawiono wyniki badań dotyczących opracowywania krzywych nagrzewania odkuwek wielkogabarytowych przeznaczonych do kucia swobodnego. Proces nagrzewania gorących wlewków prowadzono w piecu komorowym. Analizowano proces nagrzewania wlewków 10, 30, 50 Mg. Dodatkowo mając na względzie dużą podatność na pękanie podzielono je na 3 grupy grzewcze, dla których wyznaczono początkową temperaturę pieca. Obliczenia wykonano Autorskim oprogramowaniem Wlewek służącym do obliczeń pola temperatury, naprężeń i odkształceń wlewków metodą elementów skończonych.
EN
The paper presents a mathematical model of heat transfer during cooling of hot-rolled rails in the reversing mill. The influence of the radiation shield on the temperature of rolled rails has been analyzed. The heat transfer model for cooling a strip covered by the thermal shield has been presented. The two types of shields build of steel and aluminum sheets separated with insulating layer have been studded. Calculations have been performed with self developed software which utilizes the finite element method.
PL
W pracy przedstawiono model matematyczny wymiany ciepła w czasie chłodzenia szyn walcowanych na gorąco w walcarce nawrotnej. Analizowano wpływ zastosowania ekranów cieplnych na temperaturę walcowanych szyn. Model wymiany ciepła pasma osłoniętego ekranem opracowano dla ekranu zbudowanego z dwóch warstw metalowych przedzielonych warstwą izolacyjną. Modelowano ekrany wykonane z blachy stalowej i aluminiowej. Jako materiał izolacyjny przyjęto warstwę saffilu. Obliczenia wykonano Autorskim oprogramowaniem z wykorzystaniem metody elementów skończonych.
EN
The paper presents the results of research concerning the influence of radiative heat transfer on the strand and mould interface. The four models for determining the heat transfer boundary conditions within the primary cooling zone for the continuous casting process of steel have been presented. A cast slab - with dimensions of 1280×220 mm - has been analysed. Models describing the heat transfer by radiation have been specified and applied in the numerical calculations. The problem has been solved by applying the finite element method and the self-developed software. The simulation results, along with their analysis, have been presented. The developed models have been verified based on the data obtained from the measurements at the industrial facility.
PL
W pracy przedstawiono wyniki badań dotyczących wpływu radiacyjnej wymiany ciepła z zastosowaniem różnych modeli do wyznaczenia warunków brzegowych dla procesu ciągłego odlewania stali w obszarze strefy pierwotnego chłodzenia. Analizie poddano wlewek płaski o wymiarach 1280×220 mm. W obliczeniach wykorzystano wybrane zależności opisujące wymianę ciepła przez promieniowanie. Przedstawiono wyniki symulacji oraz ich analizę. Zaprezentowane modele zweryfikowano na podstawie przemysłowej bazy danych. Zadanie zostało rozwiązane metodą elementów skończonych z zastosowaniem autorskiego pakietu numerycznego.
EN
The paper presents an attempt of modelling liquid steel motion triggered off by electromagnetic stirring. Steel viscosity was calculated on the basis of temperature field determined with the use of stationary heat conduction equation. Velocity field was determined using Navier-Stokes equations and stream continuity equation. Solution was obtained using the finite element method. The developed model allows to carry out quick simulating calculations of fluid flow. Stationary solution was employed, and this allowed to reduce computation time substantially.
PL
W pracy podjęto próbę modelowania ruchu ciekłej stali wywołanej mieszaniem elektromagnetycznym. Lepkość stali obliczano na podstawie pola temperatury wyznaczonego ze stacjonarnego równania przewodzenia ciepła. Pole prędkości wyznaczono korzystając z równań Naviera-Stokesa i równania ciągłości strugi. Rozwiązanie uzyskano metodą elementów skończonych. Opracowany model pozwala na wykonywanie szybkich obliczeń symulacyjnych ruchów ciekłej stali. Zastosowano rozwiązanie stacjonarne, co umożliwiło istotne skrócenie czasu obliczeń.
PL
W pracy przedstawiono metodykę doboru krzywych nagrzewania w piecu grzewczym o pracy ciągłej. Przeprowadzono pomiar temperatury nagrzewanego wsadu za pomocą urządzenia Datapaq Slab Reheat System celem ustalenia warunków brzegowych wymiany ciepła specyficznych dla badanego pieca. Obliczenia nagrzewania wsadu i projektowanie krzywych nagrzewania prowadzono z wykorzystaniem Autorskiego programu komputerowego „Piec 1.0”.
EN
Methodology of the heating curves designing for charge heating in the walking beam furnace has been presented. Heat transfer boundary conditions has been identified based on charge temperature measurements with the Datapaq Slab Reheat System. Calculations of charge heating was conducted with the developed computer program „Piec 1.0”.
PL
W pracy przedstawiono modele matematyczne opisujące wymianę ciepła w czasie nagrzewania wsadu w komorowym piecu elektrycznym oraz podczas chłodzenia pasma osłoniętego ekranem cieplnym. Rozwiązanie uzyskano w przekroju poprzecznym pasma. Modele matematyczne dostosowano do warunków nagrzewania i walcowania płaskowników w linii LPS. Model nagrzewania wsadu w elektrycznym piecu komorowym opracowano na podstawie radiacyjnej wymiany ciepła między nagrzewanym materiałem i ścianami pieca. Model wymiany ciepła pasma osłoniętego ekranem cieplnym opracowano dla ekranu zbudowanego z trzech warstw: wewnętrznej osłony metalowej, warstwy izolującej i zewnętrznej osłony metalowej. Modelowano dwa ekrany: jeden z osłoną z blachy stalowej i drugi z osłoną wykonaną z blachy aluminiowej. Model wymiany ciepła pasma osłoniętego ekranem cieplnym może być zastosowany również dla innych linii walcowania ciągłego slabów i blach.
EN
The numerical model describing the heat transfer during charge heating in the electric chamber furnace has been presented. Heat transfer models for hot rolling were supplemented by the boundary conditions for cooling of strand covered by the thermal shield. The solution was obtained in the cross section of the rolled material. The heat transfer models were adjusted to the technical specifi cations of the LPS rolling line. The heat transfer model for charge heating was developed based on the radiation heat transfer between the charge and the furnace wall surfaces. Heat transfer model for cooling of the rolled strand covered with three layer thermal shield was developed. Two types of shields were studied: with steel sheet shield and with aluminum sheet shield. The heat transfer model for rolled strand covered by the thermal shield is also suitable for other rolling lines.
PL
W pracy przedstawiono trójwymiarowy model naprężeń i odkształceń powstających we wlewku odlewanym w sposób ciągły. Rozwiązanie uzyskano metodą elementów skończonych. Analizowano wpływ dodatkowego chłodzenia naroży na rozkład naprężeń i odkształceń powstających we wlewku odlewanym w urządzeniu COS. Przeprowadzono również analizę wpływu tego chłodzenia pod kątem możliwości powstawania pęknięć w strefi e naroży. Obliczenia pękania prowadzono z zastosowaniem powszechnie wykorzystywanego w tym celu kryterium Lathama. Analizowano proces odlewania wlewków kwadratowych o wymiarach 160×160 mm ze stali o zawartości węgla 0,84%.
EN
Three dimensional model of the stress and strain field in the continuously cast strand has been presented. The finite element method has been employed in the thermo-mechanical model. The influence of the additional rapid cooling of the strand corners on the strain and stress field has been investigated. The investigations of the additional cooling ware focused on the fracture development at strand corners caused by high temperature gradients. Latham fracture criterion has been used in the finite element model of the fracture development. The computations have been performed for continuous casting of the 160×160 mm square strand made of steel having 0,84% of carbon.
PL
W pracy przedstawiono model numeryczny, opisujący przewodzenie ciepła w prętach i płaskownikach walcowanych w linii LPS i innych układach ciągłego walcowania. Rozwiązanie uzyskano w przekroju poprzecznym płaskownika lub pręta. W modelu uwzględniono zmianę kształtu przekroju bryły w wyniku odkształcenia plastycznego. Zmianę kształtu wprowadzono przez transformację przekroju poprzecznego pręta lub płaskownika. W modelu wymiany ciepła uwzględniono ciepło odkształcenia plastycznego, ciepło tarcia na powierzchni styku odkształcanego materiału z walcami. Uwzględniono również efekty cieplne przemian fazowych. Model numeryczny i oprogramowanie testowano w warunkach linii LPS.
EN
The numerical model describing heat transfer in bars and slabs rolled in LPS line and the other rolling systems has been presented in the paper. The solution was obtained at the cross section of the rolled material. The change of workpiece shape caused by plastic deformation was considered. The workpiece shape deformation was introduced by transformation of the cross section of the rolled bar or fl at. The heat of plastic deformation in the deformation zone and the heat of friction at the material/roll interface have been taken into account. Also the latent heat of phase transformation was considered. Numerical model and developed software have been tested at the LPS line.
PL
W pracy przedstawiono trójwymiarowy model numeryczny wymiany ciepła w czasie nagrzewania wsadu w piecu przepychowym przy zastosowaniu metody elementów skończonych. Radiacyjną wymianę ciepła w komorze pieca realizowano opierając się na metodzie strefowej. Strumień energii radiacyjnej docierającej do powierzchni nagrzewanego wsadu wyznaczano prowadząc obliczenia jasności w wielopowierzchniowym układzie zamkniętym, jakim jest komora pieca przepychowego wypełnionego ośrodkiem emitująco-pochłaniającym. Analizowano wpływ zastosowanego modelu własności gazu na rozkład gęstości strumienia ciepła na długości pieca przepychowego.
EN
Three dimensional numerical heat transfer model of the charge heating in the pusher furnace based on finite element method has been presented. The zone method was used in modelling the radiation heat transfer in the furnace chamber. The radiation energy flux which reaches the surface of the hot charge has been estimated from the brightness calculation in multi-surface closed system. The pusher furnace chamber filled with emitting-absorbing medium can be treated as a multi-surface closed system. The influence of the gas model on the variation of the heat flux along the length of the pusher furnace has been analyzed.
EN
A three dimensional numerical model of the heat exchange during a charge heating process in a pusher furnace, using the finite element method, was used in this study. The radiative heat exchange in the furnace chamber was carried out based on two methods: the zone method and the method of basing on the average configuration ratio. In the zone method the flux of radiation energy reaching the surface of the heated charge was determined by performing calculations of brightness in a multi-surface closed system which is the pusher furnace chamber filled with an emitting-absorbing medium. In the second case an average configuration ratio was used by setting the radiation energy flux through linking the walls temperature with the furnace atmosphere temperature.
PL
W pracy wykorzystano trójwymiarowy model numeryczny wymiany ciepła w czasie nagrzewania wsadu w piecu przepychowym przy zastosowaniu metody elementów skończonych. Radiacyjna wymianę ciepła w komorze pieca realizowano w oparciu o dwie metody: metodę strefowa oraz w oparciu o średni współczynnik konfiguracji. W metodzie strefowej strumień energii radiacyjnej docierającej do powierzchni nagrzewanego wsadu wyznaczano prowadząc obliczenia jasności w wielo-powierzchniowym układzie zamkniętym jakim jest komora pieca przepychowego wypełnionego ośrodkiem emitująco-pochłaniającym. W drugim przypadku wykorzystano średni współczynnik konfiguracji wyznaczając strumie energii radiacyjnej poprzez powiazanie temperatury ścian z temperatura atmosfery pieca.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.