Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The present study investigates the reduction of free residual chlorine (FC) from aqueous solution using non-modified biochar (NM-B) and chemically modified biochar (M-B) derived from date palms. The role of biochar dose, biochar particle size, reaction time, solution pH, and initial concentration of FC on adsorption efficiency were assessed. The optimum contact time for higher FC uptake was reached after 20 min using NM-B and 8 min using M-B, with a biochar dose of 10 g/L. The optimum pH values and biochar size for higher FC adsorption were 4 and 0.6 mm, respectively. Higher removal was reached at 88% using NM-B and 96% using M-B. The pseudo-second-order model matched well with the kinetic outcomes. Langmuir isotherm was fitted well with the equilibrium results of FC uptake on NM-B and M-B, with regression coefficient (R2) values of 0.98 and 0.998, in that order. The separation parameter was within the limits of favorable adsorption of FC by both biochars. The higher uptake capacity (0.215 mg/g) was linked with the M-B, indicating that chemical modification of biochar was successful in increasing FC uptake from aqueous solutions. This study confirmed that utilizing biochar derived from date palms for FC removal is a very beneficial and cost-effective solution, especially in the countries that are considered the largest date producer in the world.
EN
The Basrah province (southern of Iraq) was interested in establishing desalination plants to provide drinking water due to the high levels of salinity in its water resources. This work was carried out in order to evaluate and simulate the functionality of the reverse osmosis plant in the Al-Maqal port. From the field and laboratory measurement, this study concluded that the considered parameters of product water by reverse osmosis (RO) plant were within the Iraqi standard (IRS) limits. The calculation of operation indices showed that the recovery rate of plant (72%) and the permeate flux of plant (20 lmh) was within for limitation of brackish surface water. In turn, the plant has a low salt rejection (90.1%) and a high pressure drop (5 bar); therefore, the membranes require backwashing or chemical cleaning. Then, the performance of RO membrane was simulated by the Winflows software. The best operating parameters were identified. The coefficient of determination (R2) between simulated and measured TDS was 0.83. Therefore, the simulated TDS of permeate multiplied by 5.3 was given a good estimation for actual TDS within acceptable an error rate of 17%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.