Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Predicting and estimating sediment yield from the catchment is crucial for the effective management of water resources and controlling soil erosion. Universal Soil Loss Equations (USLE) and their modifications have been appreciated and commonly applied among many methods. The idea of this work is to use the ESDAC database (a web platform hosting a series of pan-European and global datasets on soil erosion) to build the modified form of the USLE for the Zagożdzonka catchment, a small agricultural area located in central Poland. The calculated sediment yield is compared with the one determined based on the reservoir survey. The conducted analyses show that the average annual suspended sediment yield from the study catchment estimated using the MUSLE equation accounts for 201 Mg and is close to that determined based on the reservoir survey, i.e., 248 Mg. However, MUSLE, with the initially proposed parameters, will overpredict sediment transport at the study site. The ESDAC database may support local studies concerning soil erosion and sediment transport. The research is helpful for policymakers, planners, and engineers.
EN
According to Hoekstra et al. (2011) the water footprint within a geographic area is defined as the total freshwater consumption and pollution within the boundaries of the area. The grey part of the water footprint refers to pollution and is an indicator of the water volume needed to assimilate a pollutant load that reaches a water body. It is possible then, based on the grey water footprint to estimate if the water available in a river at a particular crosssection will be sufficient to maintain a water pollution level (WPL) below 100%. The crossing of 100% indicates that the waste assimilation capacity has been fully consumed in this particular catchment. In this paper, the grey water footprint from nonpoint source pollution has been calculated based on long-term hydrometrological data for the upper part of a small agricultural catchment (area of 23.4 km2 ) (Zagożdżonka River) in central Poland. Based on land use and the amount of fertilizers applied in the catchment, together with information about the natural concentration of nitrogen and phosphorus in the river, as well as maximum acceptable concentration, the water pollution level has been calculated for actual conditions. The estimation of future runoff decreases for the considered catchment (Banasik, Hejduk 2012) has been applied in order to estimate potential future water pollution levels. The calculation shows that, even when the management practices in this catchment remain as they are, including the current extensive crop production, the WPL of 100% will be exceeded in the year 2033 (for phosphorus) and 2043 (for nitrogen) due only to the decreasing availability of water.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.