Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Objective: To develop a novel algorithm for tracking acute mental stress which can infer acute mental stress state from multi-modal digital signatures of physiological parameters compatible with wearable-enabled sensing. Methods: We derived prominent digital signatures of physiological responses to mental stress using cross-integration of multi-modal physiological signals including the electrocardiogram (ECG), photoplethysmogram (PPG), seismocardiogram (SCG), ballistocardiogram (BCG), electrodermal activity (EDA), and respiratory effort. Then, we developed an algorithm for tracking acute mental stress that can continuously classify stress vs no stress states by computing an aggregated likelihood computed with respect to a priori probability density distributions associated with the digital signatures of mental stress under stress and no stress states. Results: Our algorithm could adequately infer mental stress state (average classification accuracy: 0.85, sensitivity: 0.85, specificity: 0.86) using a small number of prominent digital signatures derived from cross-integration of multi-modal physiological signals. The digital signatures in our work significantly outperformed the digital signatures employed in the state-of-the-art in tracking acute mental stress. Its exploitation of collective inference allowed for improved inference of mental stress state relative to naïve data mining techniques. Conclusion: Our algorithm for tracking acute mental stress has the potential to make a leap in continuous, highaccuracy, and high-confidence inference of mental stress via convenient wearable-enabled physiological sensing. Significance: The ability to continuously monitor and track mental stress can collectively improve human wellbeing.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.