Mobility of the robot depends on the vehicle dimensions, locomotion principles and wheel characteristics. The function of the wheel is to carry the load and to produce the traction force. The main factors of wheel terrain interaction are bearing capacity of ground, traction performance of the wheel and geometry of terrain profile. In this paper the system and control concepts of the wheeled robot is discussed in more detail, within the framework provided by the wheel terrain contact model. The dynamic model of the wheeled robot is presented by considering contact forces of the wheel due to their relative motion of the wheel and contact plane. Finally, a dynamic relation is introduced and results are presented in terms of forces, torques and displacements related to wheel terrain interaction. To estimate the forces in the system arising from the interaction between a deformable wheel and rigid terrain using the software package Ansys 10.0. Simulations were performed using Matlab- Simulink program and the results are shown that the proposed controller can overcome the influences the effect of contact forces in order to achieve the desired trajectory.
Avariety of approaches for trajectory tracking control of wheeled mobile robots have been implemented. This paper presents a model for a time optimal motion control based on fuzzy logic algorithm for a three wheeled nonholonomic mobile robot with desired function. Simplified kinematic equations of a differentially driven robot are designed to follow the path with evaluated linear and angular velocities. Here, the proposed kinematic model is based on a simple geometric approach for getting the desired position and orientation. The speeds are varied depending on the variations in the path and on the posture of the robot. The robot is subjected to move in a constrained workspace. The control architecture was developed based on fuzzy logic algorithm to obtain time optimal motion control of robot trajectory tracking. The kinematic model was done on Matlab software environment and profound impact on the ability of the nonholonomic mobile robot to track the path was evaluated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.