In the calculation of the acoustic performance of mufflers, the walls of mufflers are usually treated rigidly without considering the acoustic-structural coupling, but the results so calculated differ significantly from the actual situation. Based on the basic equations, the article derives the finite element equations of the muffler system while considering the acoustic-structural coupling effect and theoretically analyses the connection between the acoustic-structural coupling system and the structural and acoustic modes. The structural and acoustic modes of the muffler are calculated and the reasons for the mutation of the transmission loss curve of the muffler when the acoustic-structural coupling is considered are analysed. The results show that the acoustic-structural coupling is the result of the interaction between the structure and the air inside the expansion chamber under acoustic excitation, which manifests mutations in the sound pressure inside the muffler in some frequency bands. Then, using a single-chamber muffler as an example, the transmission loss is used to characterise the performance of the muffler. The effects of different factors such as shell thickness, structure, porous media material lining, and restraint method on the acoustic-structural coupling effect of the muffler are analysed, and the structure of a double-chamber muffler is successfully optimised according to the conclusions.
Momentum wheels are the key components of the inertial actuators in the satellites, and the momentum wheel bearings are weak links of momentum wheels as they operate under harsh conditions. The reliability estimation for momentum wheel bearings are helpful to guarantee the mission successes for both momentum wheels and satellites. Hence, this paper put emphasis into reliability estimation of a momentum wheel bearing considering multiple coupling operating conditions and frictional heat by using the finite element analysis. The stress-strength interference model is employed to calculate the reliability of the momentum wheel bearing. A comparative analysis for reliability estimation with and without frictional heat of the momentum wheel bearing is conducted. The results show that the frictional heat cannot be ignored in the reliability analysis of momentum wheel bearings.
PL
Koła zamachowe są kluczowymi elementami składowymi siłowników bezwładnościowych w satelitach. Ich łożyska stanowią słaby punkt podczas pracy w trudnych warunkach. Ocena niezawodności łożysk kół zamachowych pozwala zapewnić powodzenie misji zarówno w odniesieniu do samych kół zamachowych, jak i satelitów. Dlatego też niniejszy artykuł poświęcono zagadnieniu oceny niezawodności łożyska koła zamachowego z wykorzystaniem analizy metodą elementów skończonych przy uwzględnieniu wielu sprzężonych warunków pracy oraz ciepła tarcia. Do obliczenia niezawodności łożyska koła zamachowego zastosowano model obciążeniowo-wytrzymałościowy. Przeprowadzono także analizę porównawczą oceny niezawodności łożyska koła zamachowego z uwzględnieniem lub bez uwzględnienia ciepła tarcia. Wyniki pokazują, że w analizie niezawodności łożysk kół zamachowych nie można pominąć ciepła tarcia.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Filling layer self-compacting concrete (FLSCC) is a key construction material in China Rail Track System (CRTS) III slab ballastless track and its resistance to impact loading is of great importance to the service security of high-speed train. In this paper, the dynamic mechani-cal characteristics of FLSCC under impact loading were investigated with a split Hopkinson pressure bar (SHPB) at strain rates ranging from 101 s_1 to 102 s_1. Results show that the compressive strength, peak strain, elastic modulus and toughness ratio of FLSCC all increase with strain rate. The increase factors of compressive strength (DIFc) and strain (DIFe) of FLSCC increase linearly with decimal logarithm of strain rate. The elastic modulus (Ed) and toughness ratio (TR) increase linearly with strain rate. Self-compacting concrete (SCC) shows greater strain rate effect than normal concrete (NC). However, FLSCC presents lower strain rate effect but better toughness performance than normal SCC. The incorporation of large content of SP and VMA provides FLSCC with higher porosity, which makes it possess excellent dynamic mechanical performance.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.