The quality of the supplied power by electricity utilities is regulated and of concern to the end user. Power quality disturbances include interruptions, sags, swells, transients and harmonic distortion. The instruments used to measure these disturbances have to satisfy minimum requirements set by international standards. In this paper, an analysis of multi-harmonic least-squares fitting algorithms applied to total harmonic distortion (THD) estimation is presented. The results from the different least-squares algorithms are compared with the results from the discrete Fourier transform (DFT) algorithm. The algorithms are assessed in the different testing states required by the standards.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
In this paper, a comparison analysis of three different algorithms for the estimation of sine signal parameters in two-channel common frequency situations is presented. The relevance of this situation is clearly understood in multiple applications where the algorithms have been applied. They include impedance measurements, eddy currents testing, laser anemometry and radio receiver testing for example. The three algorithms belong to different categories because they are based on different approaches. The ellipse fit algorithm is a parametric fit based on the XY plot of the samples of both signals. The seven parameter sine fit algorithm is a least-squares algorithm based on the time domain fitting of a single tone sinewave model to the acquired samples. The spectral sinc fit performs a fitting in the frequency domain of the exact model of an acquired sinewave on the acquired spectrum. Multiple simulation situations and real measurements are included in the comparison to demonstrate the weaknesses and strong points of each algorithm.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper describes the prototype of a power quality analyzer designed for real-time detection and classification of disturbances that occur in a single-phase power system. The standalone DSP-based analyzer implements previously developed algorithms for detection and classification of power quality disturbances such as transients, waveform distortions, sags, swells and interruptions. Its performance was verified during long term monitoring of the power system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.