Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 33

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
Purpose: The article aims to present a proposal and discuss the Green Kaizen Model, which is focused on integrated development, ensuring cost reduction and fulfilling the requirements of all the organisation’s interested parties. Design/methodology/approach: The authors have prepared and presented the Green Kaizen Model in the study. Its effectiveness has been confirmed in the balanced development of the DPF production process. Findings: The development of the model, based on the multiannual experience of the automotive-oriented organisation and its systemic application, has confirmed that its implementation brings measurable benefits in the range of limiting the environmental aspects. Practical implications: The paper should be of special attention to engineers interested in applying Green Kaizen and recycling materials databases to develop processes. Originality/value: The value of the presented paper is constituted by the Green Kaizen Model. The proposed model may create a complex tool for improving the costs and quality range processes and be dedicated to sustainable development.
EN
The ceramic coatings based on mixture of Al2O3 and TiO2 have better properties in comparison to the pure alumina ones. Among many techniques, plasma spraying is very useful method of ceramic coatings manufacturing. In this paper, the results of microscopic, mechanical and tribological properties investigations of Al2O3 + 13 wt% TiO2 coatings manufactured by atmospheric plasma spraying are presented. The cylinder substrates made from stainless steel (X5CrNi18-10) had a diameter equal to 25 mm and thickness equal to 2 mm. The plasma spray experimental parameters included three variables: (i) type of injection system (external or internal), (ii) size of corundum particles for sandblasting and (iii) torch linear speed. The results confirm, that type of injection system is a dominant parameter. Internal injection results in better degree of particles melting, what influences on wear resistance performance, as well as higher values of bond strength.
EN
Purpose: The purpose of this investigation was to determine the changes in the surface layer (Inconel 625), obtained during the laser treatment of tool-steel alloy for hot work by the use high-power fibre laser. Design/methodology/approach: Observations of the layer structure, HAZ, and substrate material were made using light and scanning microscopy. The composition of elements and a detailed analysis of the chemical composition in micro-areas was made using the EDS X-ray detector. The thickness of the resulting welds, heat affected zone (HAZ) and the contribution of the base material in the layers was determined. Findings: As a result of laser cladding, using Inconel 625 powder, in the weld overlay microstructure characteristic zones are formed: at the penetration boundary, in the middle of weld overlay and in its top layer. It was found that the height of weld overlay, depth of penetration, width of weld overlay and depth of the heat affected zone grows together with the increasing laser power. Practical implications: Laser cladding is one of the most modern repair processes for eliminating losses, voids, porosity, and cracks on the surface of various metals, including tool alloys for hot work. Laser techniques allow to make layers of materials on the repaired surface, that can significantly differ in chemical composition from the based material (substrate material) or are the same. Originality/value: A significant, dynamic development in materials engineering as well as welding technologies provides the possibility to reduce the cost of production and operation of machinery and equipment, among others by designing parts from materials with special properties (both mechanical and tribological) and the possibility of regeneration of each consumed element with one of the selected welding technologies.
EN
The paper presents results of the effect of laser surface remelting and alloying by carbides powders of NbC, TaC, TiC, VC and WC on the structure and thermal fatigue resistance of the surface layer of hot work tool steels X40CrMoV5-l and 32CrMoV12-28. The laser surface alloying and remelting treatments was performed using a high power diode laser (HPDL ROFTN SLNAR DL 020). In order to investigate the effect of applied laser treatments and used alloying powders on the microstructure and thermal fatigue resistance of processed surface layer of hot work tool steels, the inicrostructure evaluation by light microscopy, hardness test, and dedicated thermal fatigue resistance test were performed. The best results regarding fatigue cracks inhibition was obtained when the surface of hot work tool steels was alloyed with TiC and VC carbides at the laser beam power of 2.0 and 2.3 kW. The grain refinement effect of laser remelting has a lower impact on the thermal crack inhibition, than a strong strengthening effect of matrix saturation in alloying elements and precipitation of fine carbides in the steel matrix.
EN
The investigations concerned the structural analysis of the AlCrSiN coating deposited by arc Physical Vapour Deposition method on the X40CrMoV5-1 hot work tool steel substrate. The deposition process was carried out on a device equipped with a technique of lateral, rotating cathodes. The nano/microstructure, phase identification and chemical state of the coating were analysed by high-resolution transmission electron microscopy. It was found that the investigated coatings have nanostructured nature consisting of fine crystallites. The fractographic tests were made using the scanning electron microscope and allow to state, that the coating was deposited uniformly and tightly adhere to the substrate material. In the work is presented the nature of a transition zone between the produced AlCrSiN coating and substrate material.
EN
Purpose: The aim of the paper is to present the innovatory investigation results of the impact of laser treatment consisting of multiple remelting and alloying using tungsten carbide ceramic powder on the microstructure and properties of hot work tool steel X40CrMoV5-1 surface layer. Design/methodology/approach: Laser heat treatment allows the production of gradient surface layer with a thickness reaching from of tenths of a millimetre even to few millimetres with specific functional properties, including high hardness and abrasion resistance, while maintaining the properties of the substrate material. Findings: Preliminary investigations of the effects of laser radiation on steel surface have showed, that in the surface layer there occur changes concerning the microstructure as well as in the chemical composition different from those occurring during conventional heat treatment. Research limitations/implications: There was determined the effect of laser power on the remelting depth, the depth of the heat affected zone and the width of the laser tray face. There was also measured and compared to the hardness and roughness of the steel processed by remelting with different process parameters. Practical implications: The current application areas for hot work tool steels are constantly growing, and the intensive development of techniques requires the use of new technologies, what leads to production of specific surface layer on materials, in order to meet the extremely difficult working conditions of modern tools. Originality/value: The effect of a HPDL laser melting on the hot work tool steel, especially on their structure and hardness has been studied.
EN
Purpose: The aim of the paper is to present the innovatory investigation results of the impact of laser treatment consisting of multiple remelting and alloying using tungsten carbide ceramic powder on the microstructure and properties of hot work tool steel X40CrMoV5-1 surface layer. Design/methodology/approach: Laser heat treatment allows the production of gradient surface layer with a thickness reaching from of tenths of a millimetre even to few millimetres with specific functional properties, including high hardness and abrasion resistance, while maintaining the properties of the substrate material. Findings: Preliminary investigations of the effects of laser radiation on steel surface have showed, that in the surface layer there occur changes concerning the microstructure as well as in the chemical composition different from those occurring during conventional heat treatment. Research limitations/implications: There was determined the effect of laser power on the remelting depth, the depth of the heat affected zone and the width of the laser tray face. There was also measured and compared to the hardness and roughness of the steel processed by remelting with different process parameters. Practical implications: The current application areas for hot work tool steels are constantly growing, and the intensive development of techniques requires the use of new technologies, what leads to production of specific surface layer on materials, in order to meet the extremely difficult working conditions of modern tools. Originality/value: The effect of a HPDL laser melting on the hot work tool steel, especially on their structure and hardness has been studied.
8
Content available remote Evaluation of microstructure and chosen properties of zinc and its alloys
EN
Purpose: This paper presents especially the results of microstructure and properties investigation results of selected zinc (Zn) and zinc alloys (ZnAl15). In the frame work of this paper were performed investigations of the microstructure using light and scanning electron microscopy as well as analysis of the chemical composition of the tested materials, there are also carried out. Design/methodology/approach: The investigations were performed on samples of pure Zn as well as of zinc-aluminium alloy ZnAl115 with the chemical composition conforming with the commercial standard. Material for the investigation was provided in the form of a wire having a diameter of 3 mm and a length of 80 mm, 130 mm and 180mm respectively, subjected to cold working consisting in pulling. Findings: The presented tests results carried out using light microscopy allowed the determination of the microstructures obtained after the production process of materials from pure zinc and selected zinc alloys. The observations made using the scanning electron microscope revealed that the decohesion after the static tensile strength test the investigated materials are characterized by a regular (circular) fracture. Pure zinc is characterized by the predominance of mixed fracture with the dominance of brittle fracture areas, whereas the zinc alloys reveals rather a ductile fracture. Practical implications: This paper deal with the investigations concerning structure an properties of pure zinc and zinc alloys with additional elements as well as impurities coming from possible recycling procedure or environmental pollution source and its appliance for further application. Originality/value: Zinc is the fourth most widely used metal in the world after iron, aluminium and copper.
PL
W artykule przedstawiono wyniki badań wpływu warunków obróbki laserowej, w tym mocy lasera oraz dodatków stopowych zawartych w wybranych proszkach węglików, na strukturę i własności warstwy wierzchniej stali stopowej narzędziowej do pracy na gorąco X40CrMoV5-1. Obróbkę wykonano za pomocą lasera diodowego dużej mocy. W opracowaniu zaprezentowano wyniki badań własnych wykonanych na próbkach ze stali narzędziowej stopowej do pracy na gorąco X40CrMoV5-1 poddanych konwencjonalnej obróbce cieplnej, a następnie przetapianych lub stopowanych laserowo w zakresie mocy lasera 1,2÷2,3 kW z udziałem proszków węglików. Celem wykonanych badań było sprawdzenie, czy w wyniku wprowadzenia do warstwy wierzchniej badanej stali pierwiastków pochodzących z rozpuszczających się proszków węglików jest możliwa poprawa własności użytkowych materiału.
EN
The paper presents investigations results of the laser treatment influence including laser power, and the alloying elements of selected carbide powders on the structure and properties of surface layer of remelted or alloyed hot work steel X40CrMoV5-1 prepared by high power diode laser. In the study, the results of researches carried out on the samples from alloyed hot work tool steel X40CrMoV5-1 subjected conventional heat treatment and then laser remelted and laser alloyed with carbides powder in the 1.2÷2.3 kW power range of laser are presented. The purpose of investigations was to test whether the introduction addition to the surface layer of the investigated steel of elements from dissolving carbides powders with improve useful properties of investigated material.
EN
Purpose: This paper presents the results of laser remelting influence on structure and properties of the surface of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels, carried out using the high power diode laser (HPDL). Structure changes were determined in the work, especially structure fragmentation. Also hardness investigation of the different remelting areas was performed. The purpose of this work was also to determine technological and technical parameters for a right performed HPDL remelting process. Boron nitride powder was used for alloying. The goal of this work was also to determine technical and technological conditions for remelting the surface layer with HPDL. Design/methodology/approach: Here are discusses the new methodology ways which can be applied in case of improving of the surface layer properties. A new laser treatment techniques applied in metal surface technology is here the most important feature. Also the influence of ceramic powders to the structure in all zones is investigated. Optical and scanning electron microscopy, EDS point wise and area microanalysis was used to characterize the microstructure and to investigate the intermetallic phases occurred. Findings: The most important factor is the zone structure of the surface layer which was coming into existence without cracks and defects as well as has a considerably higher hardness value compared to the non remelted material. It was find out, that the hardness of the alloyed surface layer increases according to the applied laser power. The highest power applied gives the highest hardness value in the remelted layer mostly in all user ceramic powders. Practical implications: The reason of this work was also to determine the laser treatment parameters, particularly the laser power, to achieve a good layer hardness for protection of this hot work tool steel from losing their work stability and to make the tool surface more resistant for work extreme conditions. The most important practical implication investigated in this work improves the appliance of HPDL laser for alloying and remelting of hot work tool steel. Originality/value: The originality of this work is assured through the using of an high-level up-to-date laser device for improvement of steel surface layer mechanical properties.
EN
Purpose: In this paper the result of laser surface feeding or remelting is discussed. The remelted layers which were formed on the surface of the investigated hot work steel were examined and analyzed metallographically and analyzed using a hardness testing machine. The resistance research has been done on the CSM Instruments. Design/methodology/approach: In this paper the results of laser treatment techniques applied in metal surface technology are presented and discussed. There is presented laser treatment with feeding or remelting of hot work tool steel X40CrMoV5-1 with ceramic powders especially - Al2O3 and Si3N4, as well as results of laser remelting influence on structure and properties of the surface of the hot work steel, carried out using the high power diode laser (HPDL). Findings: On the basis of the wear abrasion tests carried out on hot work tool steel it could be found that each of those specimens is characterized by different resistance for the same powders and the power of the laser beam. The metallographic investigations on light microscope show that during feeding or remelting the hot work tool steel with the ceramic powder layer in the whole range of the laser power values used 1.2-2.3 kW the obtained bead face is characteristic of the high roughness, multiple pores, irregularity. Practical implications: The resistance to abrasive wear is a practical aim of this work as well as improvement of hardness as a very important properties for practical use. It is necessary to continue the research to determine feeding or remelting parameters for demanded properties of hot work tool steels surface layers. Originality/value: Laser feeding or remelting by using HPDL laser (High Power Diode Laser) and selected ceramic powders can be very attractive for industries.
12
EN
Purpose: The paper presents the comparison of the abrasion wear resistance of the laser alloyed hot work tool steels X40CrMoV5-1 and 32CrMoV12-28. Design/methodology/approach: The tribological wear relationships using pin-on-disc test were specified for surface layers subject to laser treatment, determining the friction coefficient, and mass loss of the investigated surfaces. Findings: The performed investigations leads to the conclusions that for both types of steels - X40CrMoV5-1 and 32CrMoV12-28 the wear resistance measured using pin-on-disc, wear resistance test in the metal - metal arrangement, and wear resistance test in the metal - ceramic material arrangement, the wear resistance increases together with the hardness of the surface layer. This relationship is valid for all types of ceramic powders used. It is characteristic for the obtained surface layers, that the high roughness, multiple pores, irregularity, and flashes at the borders increases also together with the increasing of the laser power. Research limitations/implications: In order to evaluate with more detail the possibility of applying these surface layers in tools, further investigations should be concentrated on the determination of the thermal fatigue resistance of the layers. Practical implications: The alloyed layers which were formed on the surface of the hot work steels have shown significant improvement concerning properties. Good properties of the laser treatment make these layers suitable for various technical and industrial applications. Originality/value: A modification of tool steels surface using a laser beam radiation, as well as coating them with special pastes containing carbide particles allows the essential improvement of the surface layer properties - their quality and abrasion resistance, decreasing at the same time the surface quality, what is dependent on the processing parameters such as energy of impulse and the time of its work.
EN
Purpose: The purpose of the paper is to present a methodological concept allowing to demonstrate the development directions of materials surface engineering according to the level of generality and the intensity of the phenomena analysed on other phenomena. Design/methodology/approach: A set of analytical methods and tools was used to present the development directions of materials surface engineering at the three levels analysed, i.e.: a macro-, meso- and microlevel. The analytical methods and tools comprise the scenario method, artificial neural networks, Monte Carlo method, e-Dephix method, statistical lists as bar charts, foresight matrices together with technology development tracks, technology roadmaps, technology information sheets and the classical materials science methods. Findings: A research methodology allowing to combine a presentation and description of the forecast future events having a varied level of generality and capturing the cause and effect relationships existing between the events. Research limitations/implications: The methodological concept discussed, implemented with reference to materials surface engineering, has a much broader meaning, and can be successfully applied in other technology foresights, and also in industrial and thematic foresights after minor modifications. Practical implications: The outcomes of the research conducted may be and should be used in the process of creating and managing the future of materials surface engineering and, within the time horizon of 20 years, may and should influence positively the development of the economy based on knowledge and innovation, sustainable development and the statistical level of the technologies used in industry, especially in small- and medium-sized enterprises. Originality/value: An own methodological concept constitutes an original way of presenting the development directions of the investigated field of knowledge. The use of neural networks
EN
Purpose: The paper presents the investigation results of the influence of laser remelting or alloying on the abrasive wear resistance of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels surface, using the high power diode laser (High Power Diode Laser). Design/methodology/approach: The main goal of this work was to compare the abrasion wear resistance of those two steels before and after laser treatment consisting on remelting or alloying with carbide powders. The reason of this work was also to determine the laser treatment parameters, particularly the laser power, to achieve surface layer with better properties for example hardness which is connected with abrasive wear resistance of surface layers. Findings: A modification of tool steels surface using a laser beam radiation, as well as coating them with special pastes containing particles such as vanadium allows the essential improvement of the surface layer properties – their quality and abrasion resistance, decreasing at the same time the surface quality, what is dependent on the processing parameters such as energy of impulse and the time of its work. Surface layer obtained due to laser modification is characteristic of different properties than the native material. Research limitations/implications: The results present only four selected laser powers by one process speed rate. Also carbide powders were used for alloying with the particle size in a chosen range. Practical implications: The alloyed layers which were formed on the surface of the hot work steel have shown significant improvement. Good properties of the laser treatment make these layers suitable for various technical and industrial applications. Originality/value: Structural and tribological behaviour of surface layer achieved by alloying and remelting using high diode power laser and selected ceramic powders were compared.
15
Content available remote Foresight methods application for evaluating laser treatment of hot-work steels
EN
Purpose: The purpose of this article is to evaluate the strategic growth perspectives of laser treatment of X40CrMoV5-1 and 32CrMoV12-28 hot-work alloy tool steels using NbC, TaC, TiC, VC and WC carbide powders. The criterion assumed for dividing the technologies into groups was the powder type; thus, five groups were selected to realised researches. Design/methodology/approach: As a part of the foresight-materials science researches, a dendrological matrix of technology value, a meteorological matrix of environment influence, and a matrix of strategies for technologies were elaborated, the strategic development tracks were determined, and materials science experiments were conducted using a scanning electron microscope, an optical microscope, a transmission electron microscope, a microhardness tester, a scratch tester, an X-ray diffractometer, an electron microprobe X-ray analyzer and a device for testing of heat fatigue and abrasive resistance. Also, technology roadmaps were prepared. Findings: The researches conducted demonstrated huge potential and attractiveness of the analyzed technologies, compared to others, and the promising properties improvement of the tested surface layers, as a result of laser surface treatment. Research limitations/implications: Researches concerning laser treatment of hot-work alloy tool steels constitute a part of a larger research project aimed at identifying, researching, and characterizing the priority innovative technologies in the field of materials surface engineering. Practical implications: The presented results of experimental materials science researches prove the significant positive impact of laser treatment on the structure and the properties of hot-work alloy tool steels, which justifies including them in the set of priority innovative technologies recommended for use in small and medium enterprises and in other business entities. Originality/value: The value of this article lies in the fact that it determines the value of laser treatment of hot-work alloy tool steels compared to other technologies and identifies the recommended strategic development tracks and technology roadmaps for them, taking into account the impact of such treatment on hardness, abrasion resistance, and coarseness of the tested surface layers.
16
EN
Purpose: In this work there are presented the investigation results of mechanical properties and microstructure of the hot work tool steel 32CrMoV12-28 alloyed with oxide powders like aluminium oxide and zirconium oxide. The purpose of this work was also to determine the laser treatment conditions for surface hardening of the investigation alloys with appliance of transmission electron microscopy. Design/methodology/approach: The investigations were performed using optical microscopy for the microstructure determination. By mind of the transmission electron microscopy the high resolution and phase determination was possible to obtain. The morphology of the ceramic powder particles was studied as well the lattice parameters for the Fe matrix and phase identification using diffraction methods was applied. Findings: After the laser alloying of the hot work tool steel with the selected oxide powders the structure of the samples changes in a way, that there are zones detected like the remelting zone the heat influence zone where the grains are larger and not so uniform as in the metal matrix. The used oxide powders are not present after the laser treatment in the steel matrix. Research limitations/implications: The investigated steel samples were examined metallographically using optical microscope with different image techniques, SEM, TEM and analyzed using a Rockwell hardness tester, also EDS microanalysis and electron diffraction with Fourier transform was made. Practical implications: As an implication for the practice a new technology can be possible to develop, based no diode laser usage. Some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction. Originality/value: The combination of TEM investigation for laser alloying of hot work tool steels makes the investigation very attractive for automotive and other heavy industries.
EN
Purpose: The aim of this paper was to study the laser treatment technique and parameters, particularly the laser power, to achieve a high value of layer properties like hardness and microhardness for protection of this hot work tool steel from losing their work stability and to make the tool surface more resistant for work. The purpose of this work was also to determine technological and technical conditions for remelting the surface layer with HPDL. Design/methodology/approach: This work presents the results of new laser treatment techniques applied in metal surface technology. There is presented laser treatment with remelting and/or alloying of X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels with carbide powders as well as results of laser remelting influence on microstructure and properties of the surface, carried out using the high power diode laser (HPDL). Special attention was devoted to monitoring of the layer morphology of the investigated material and on the particle occurred. Findings: The layer is without cracks and defects as well as has a considerably higher hardness value compared to the non remelted material. The hardness value increases according to the laser power used so that the highest power applied gives to highest hardness value in the remelted layer.
PL
Przedstawiono wyniki badań wpływu warunków technologicznych i parametrów przetapiania laserowego lub stopowania laserowego węglikami NbC i TiC na strukturę i własności warstwy wierzchniej stali stopowej narzędziowej do pracy na gorąco X40CrMoV5-1. Próby przetapiania i stopowania laserowego wykonano za pomocą lasera diodowego dużej mocy (HPDL). Badania wykazują, że w zależności od rodzaju zastosowanych proszków węglików oraz mocy lasera (HPDL) możliwe jest kształtowanie struktury i własności warstwy wierzchniej badanej stali. Przetapianie laserowe warstwy wierzchniej badanej stali w atmosferze argonu bez wprowadzania dodatków stopujących do ciekłego jeziorka metalu w całym zakresie zastosowanej mocy lasera prowadzi do utworzenia drobnoziarnistej struktury dendrytycznej, o kierunku krystalizacji zgodnym z kierunkiem odprowadzenia ciepła ze strefy oddziaływania wiązki lasera. W wyniku przetapiania laserowego lub stopowania laserowego następuje zmiana własności warstwy wierzchniej badanej stali, w porównaniu do analogicznych własności stali uzyskanych w wyniku konwencjonalnej obróbki cieplnej, która zależy od mocy lasera użytej do przetapiania lub stopowania laserowego. Wzrostowi twardości warstwy wierzchniej uzyskanej w wyniku przetapiania lub stopowania węglikami TiC lub NbC przy użyciu lasera HPDL towarzyszy wzrost własności trybologicznych w porównaniu do stali poddanej konwencjonalnej obróbce cieplnej.
EN
The results of remelting and alloying laser parameters on the structure and properties of the surface layer of the X40CrMoV5-1 hot work tool steels, using the high power diode laser (HPDL) are presented. Investigation indicate the influence of the alloying carbides on the structure and properties of the surface layer of investigated steel depending on the kind of alloying carbides and power implemented laser (HPDL). Laser alloying of surface layer of investigated steel without introducing alloying additions into liquid molten metal pool, in the whole range of used laser power, causes size reduction of dendritic microstructure with the direction of crystallization consistent with the direction of heat carrying away from the zone of impact of laser beam. Remelting of the steel without introducing into liquid molten pool the alloying additions in the form of carbide powders, causes slight increase of properties of surface layer of investigated steel in comparison to its analogical properties obtained through conventional heat treatment, depending on the laser beam power implemented for remelting. The increase of hardness of surface layer obtained throughout remelting and alloying with carbides by high power diode laser is accompanied by increase of tribological properties, when comparing to the steel processed with conventional heat treatment.
EN
Purpose: In this paper the results of remelting and alloying laser parameters on the structure and properties of the surface layer of the X40CrMoV5-1 and 32CrMoV12-28 hot work tool steels, using the high power diode laser (HPDL) are presented. Design/methodology/approach: The effect was determined of the main alloying parameters on hardness, abrasive wear resistance and roughness. The hot work tool steels conventionally heat treated were used as reference material and the tantalum carbide was used as an alloying material. The remelted layers which were formed in the surface of investigated hot work tool steels were metallographically examined and analyzed using a hardness testing machine. Findings: It was found out in examinations of the surface layer that it can be possible to obtain high quality top layer with higher hardness and abrasive wear resistance compared to material after conventional heat treatment. Research limitations/implications: The surface layer and its properties are elements which are critical for lifetime of tools and parts of machines and also for lifetime of whole technical equipment. If the working surface of a tool or its part is exposed to rough friction, an intensive mass and volume loss occurs. In this case it is reasonable to produce a surface layer which is extremely wear resistant to avoid the mass and volume loss. Originality/value: The research results of this type of heat treatment show that there is a possibility of applying the worked out technology to manufacturing or regeneration of chosen hot working tools.
EN
Purpose: The paper presents investigation results of the structure and properties of alloying surface layer of the X40CrMoV5-1 hot work tool steel, using the high power diode laser HPDL. Tantalum and vanadium carbides powders were used for alloying and the X40CrMoV5-1 conventionally heat treated steel was used as reference material. Design/methodology/approach: Metallographic examinations of the material structures after laser alloying surface layer were made on light microscope and transmission electron microscope. The resistance research has been done with the use of the pin-on-disc method. Hardness tests were made with Rockwell method in C scale. Findings: It was found out in examinations of the surface layer that it can be possible to obtain high quality top layer with better properties compared to material after a standard heat treatment. Research limitations/implications: In this research two powders (TaC and VC) were used for alloying of the surface layer of investigated steel. Practical implications: The structure as well as improvement of mechanical properties is a practical aim of this work as well as improvement of hardness as a very important properties for practical use. Originality/value: The research results of this type of heat treatment show that there is a possibility of applying the worked out technology to manufacturing or regeneration of chosen hot working tools.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.