Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Today, with the longing for smart and sustainable transportation, the elevator industry has undergone major metamorphism in the field of control algorithm, electric drive, and the motor. Amongst these, regenerative drive (RD) plays a pivotal role in making elevator technology more energy efficient. Rather than wasting the recovery energy from the machine as heat, RD recovers it as green energy. Conventional direct current (DC) motors ruled the elevator industry for many years and were adopted as standard type of elevator motors. But with the advancement in electric drive technology, alternating current (AC) motors, especially induction motors, flourished in the later part. Recently with the introduction of Permanent Magnet Synchronous Motors (PMSM) technology, the elevator revolution began in terms of power quality, ride quality, and green energy. Likewise, contrasted with different types of vertical transportation machines, PMSMs have better powerful execution, compact size, and higher system-level efficiency. Recently, with the rapid improvement in intensity hardware, utilization of rare earth magnetic materials, and indubitably advanced research, PMSM has rapidly changed systems globally. PMSM is a multivariable, nonlinear, and high-coupling framework. The torque and stator current present a unique capacity connection. Attractive fields can be decoupled to gain decent power outcomes. With the presentation of regenerative PMSM, electrical drives coupled to system integrated frameworks for recovery energy has enhanced savings in power consumptions.
EN
The proposed study is improvised value-engineered modifications for the basic interleaved boost converter (IBC) by including relevant modifications in circuits, which is expected for a better performance in switching with reduction in losses. The newly modified IBC circuit with insulated gate bipolar transistor (IGBT) along with converter has been experimented by simulations and the results are tabulated to modified IBC with metal oxide silicon field effect transistors. Further experimental analysis and validations of the proposed simulation with hardware developed adopting model SKM195GB066D consisting of IGBTs is presented. This study further enhances and summarises the optimum utilisation and the performance of IBC with the proposed IGBT modules that synchronises power diode. Enhancing the simulation outcomes, the hardware is proposed and developed to be tested for a load up to 1.5 kW with the evaluation of key parameters such as efficiency of the converter.
EN
Material handling and logistics management that involve transportation of work pieces on production floor are important aspects to manufacturing that affect productivity and efficiency. Tow vehicles that are manually driven are currently used for this purpose. These processes can be better performed through automation. Automated guided vehicle (AGV) is an apt solution. AGVs are unmanned autonomous vehicles that can be programmed to perform versatile tasks. AGVs available in market are imported and hence have high capital cost and increased lead time for spare parts. Proposed AGV is built with a capital cost that is less than half of the existing AGVs. Its design is made indigenously, with most of its parts locally sourced. It can achieve a speed of 0.83 m/s, with a pulling capacity of 1,300 kg. Its rechargeable batteries sustain four hours of continuous operation for one complete discharge. It has been tested and found to effectively replace tow vehicles.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.